首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2647篇
  免费   324篇
  国内免费   472篇
测绘学   550篇
大气科学   491篇
地球物理   475篇
地质学   729篇
海洋学   269篇
天文学   10篇
综合类   240篇
自然地理   679篇
  2024年   11篇
  2023年   26篇
  2022年   127篇
  2021年   135篇
  2020年   176篇
  2019年   169篇
  2018年   140篇
  2017年   151篇
  2016年   141篇
  2015年   169篇
  2014年   147篇
  2013年   257篇
  2012年   184篇
  2011年   148篇
  2010年   115篇
  2009年   156篇
  2008年   145篇
  2007年   145篇
  2006年   116篇
  2005年   88篇
  2004年   72篇
  2003年   59篇
  2002年   73篇
  2001年   49篇
  2000年   42篇
  1999年   47篇
  1998年   43篇
  1997年   40篇
  1996年   30篇
  1995年   27篇
  1994年   38篇
  1993年   34篇
  1992年   33篇
  1991年   23篇
  1990年   15篇
  1989年   17篇
  1988年   9篇
  1987年   10篇
  1986年   6篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   5篇
  1972年   4篇
  1971年   1篇
  1954年   1篇
排序方式: 共有3443条查询结果,搜索用时 15 毫秒
51.
A simple approach for incorporating a spatial weighting into a supervised classifier for remote sensing applications is presented. The classifier modifies the feature-space distance-based metric with a spatial weighting. This is facilitated by the use of a non-parametric (k-nearest neighbour, k-NN) classifier in which the spatial location of each pixel in the training data set is known and available for analysis. A remotely sensed image was simulated using a combined Boolean and geostatistical unconditional simulation approach. This simulated image comprised four wavebands and represented three classes: Managed Grassland, Woodland and Rough Grassland. This image was then used to evaluate the spatially weighted classifier. The latter resulted in modest increase in the accuracy of classification over the original k-NN approach. Two spatial distance metrics were evaluated: the non-centred covariance and a simple inverse distance weighting. The inverse distance weighting resulted in the greatest increase in accuracy in this case.  相似文献   
52.
泰斯模型的统计分析求解   总被引:4,自引:0,他引:4  
本文利用统计分析来求解水文地质参数,原理简单,解是唯一的。其基本思想是利用非稳定流抽水试验获得的s-t系列资料,以泰斯公式为参考模型,建立试验系列的非线性统计模型,求解导水系数T和贮水系数μ 。统计模型既可利用目前先进的软件辅助求解,亦可利用一台可编程计算器完成计算。本文借助一个实例,应用MATLAB语言的统计分析工具的多元回归分析模块进行求解,获得了理想的结果。  相似文献   
53.
基于灰色系统理论的灰关联分析方法,提出了权函数的优选方法,实例分析表明其具有较好的实用价值.  相似文献   
54.
Introduction Estimation of an attenuation relationship for strong ground motion parameters has been an interesting research subject in the field of engineering seismology and has played a very important role in seismic safety evaluation, seismic zoning, seismic hazard evaluation of major constructions, etc. At present, the generally used parameters include peak acceleration, peak velocity and elastic response spectrum. Such parameters mentioned above are essentially independent of the duration…  相似文献   
55.
A dataset of 21 study reaches in the Porter and Kowai rivers (eastern side of the South Island), and 13 study reaches in Camp Creek and adjacent catchments (western side of the South Island) was used to examine downstream hydraulic geometry of mountain streams in New Zealand. Streams in the eastern and western regions both exhibit well-developed downstream hydraulic geometry, as indicated by strong correlations between channel top width, bankfull depth, mean velocity, and bankfull discharge. Exponents for the hydraulic geometry relations are similar to average values for rivers worldwide. Factors such as colluvial sediment input to the channels, colluvial processes along the channels, tectonic uplift, and discontinuous bedrock exposure along the channels might be expected to complicate adjustment of channel geometry to downstream increases in discharge. The presence of well-developed downstream hydraulic geometry relations despite these complicating factors is interpreted to indicate that the ratio of hydraulic driving forces to substrate resisting forces is sufficiently large to permit channel adjustment to relatively frequent discharges.  相似文献   
56.
利用可见光/近红外反射光谱估算土壤总氮含量的实验研究   总被引:25,自引:0,他引:25  
利用土壤的室内反射率光谱,探讨土壤氮元素的高光谱机理。利用土壤光谱各吸收带的特征参数与总氮含量进行逐步回归运算,确定与氮元素关系比较密切的几个吸收带。计算出这几个特征吸收带内土壤反射率的变化形式:一阶导数(FDR)、倒数(1/R)、倒数之对数(log(1/R))、波段深度(Depth),并与总氮含量进行逐步回归分析,得到比较理想的结果:建模样本的Ra^2(修正的判定系数)分别为0.789、0.753、0.736、0.699,验证样本的Ra^2分别为0.759、0.468、0.794、0.725。可见土壤的反射率光谱与氮元素含量之间存在比较明显的相关性,可见光/近红外反射光谱具有快速估算土壤中氮元素含量的潜力。  相似文献   
57.
In this study, the climate teleconnections with meteorological droughts are analysed and used to develop ensemble drought prediction models using a support vector machine (SVM)–copula approach over Western Rajasthan (India). The meteorological droughts are identified using the Standardized Precipitation Index (SPI). In the analysis of large‐scale climate forcing represented by climate indices such as El Niño Southern Oscillation, Indian Ocean Dipole Mode and Atlantic Multidecadal Oscillation on regional droughts, it is found that regional droughts exhibits interannual as well as interdecadal variability. On the basis of potential teleconnections between regional droughts and climate indices, SPI‐based drought forecasting models are developed with up to 3 months' lead time. As traditional statistical forecast models are unable to capture nonlinearity and nonstationarity associated with drought forecasts, a machine learning technique, namely, support vector regression (SVR), is adopted to forecast the drought index, and the copula method is used to model the joint distribution of observed and predicted drought index. The copula‐based conditional distribution of an observed drought index conditioned on predicted drought index is utilized to simulate ensembles of drought forecasts. Two variants of drought forecast models are developed, namely a single model for all the periods in a year and separate models for each of the four seasons in a year. The performance of developed models is validated for predicting drought time series for 10 years' data. Improvement in ensemble prediction of drought indices is observed for combined seasonal model over the single model without seasonal partitions. The results show that the proposed SVM–copula approach improves the drought prediction capability and provides estimation of uncertainty associated with drought predictions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
58.
Snow availability in Alpine catchments plays an important role in water resources management. In this paper, we propose a method for an optimal estimation of snow depth (areal extension and thickness) in Alpine systems from point data and satellite observations by using significant explanatory variables deduced from a digital terrain model. It is intended to be a parsimonious approach that may complement physical‐based methodologies. Different techniques (multiple regression, multicriteria analysis, and kriging) are integrated to address the following issues: We identify the explanatory variables that could be helpful on the basis of a critical review of the scientific literature. We study the relationship between ground observations and explanatory variables using a systematic procedure for a complete multiple regression analysis. Multiple regression models are calibrated combining all suggested model structures and explanatory variables. We also propose an evaluation of the models (using indices to analyze the goodness of fit) and select the best approaches (models and variables) on the basis of multicriteria analysis. Estimation of the snow depth is performed with the selected regression models. The residual estimation is improved by applying kriging in cases with spatial correlation. The final estimate is obtained by combining regression and kriging results, and constraining the snow domain in accordance with satellite data. The method is illustrated using the case study of the Sierra Nevada mountain range (Southern Spain). A cross‐validation experiment has confirmed the efficiency of the proposed procedure. Finally, although it is not the scope of this work, the snow depth is used to asses a first estimation of snow water equivalent resources.  相似文献   
59.
Historically, observing snow depth over large areas has been difficult. When snow depth observations are sparse, regression models can be used to infer the snow depth over a given area. Data sparsity has also left many important questions about such inference unexamined. Improved inference, or estimation, of snow depth and its spatial distribution from a given set of observations can benefit a wide range of applications from water resource management, to ecological studies, to validation of satellite estimates of snow pack. The development of Light Detection and Ranging (LiDAR) technology has provided non‐sparse snow depth measurements, which we use in this study, to address fundamental questions about snow depth inference using both sparse and non‐sparse observations. For example, when are more data needed and when are data redundant? Results apply to both traditional and manual snow depth measurements and to LiDAR observations. Through sampling experiments on high‐resolution LiDAR snow depth observations at six separate 1.17‐km2 sites in the Colorado Rocky Mountains, we provide novel perspectives on a variety of issues affecting the regression estimation of snow depth from sparse observations. We measure the effects of observation count, random selection of observations, quality of predictor variables, and cross‐validation procedures using three skill metrics: percent error in total snow volume, root mean squared error (RMSE), and R2. Extremes of predictor quality are used to understand the range of its effect; how do predictors downloaded from internet perform against more accurate predictors measured by LiDAR? Whereas cross validation remains the only option for validating inference from sparse observations, in our experiments, the full set of LiDAR‐measured snow depths can be considered the ‘true’ spatial distribution and used to understand cross‐validation bias at the spatial scale of inference. We model at the 30‐m resolution of readily available predictors, which is a popular spatial resolution in the literature. Three regression models are also compared, and we briefly examine how sampling design affects model skill. Results quantify the primary dependence of each skill metric on observation count that ranges over three orders of magnitude, doubling at each step from 25 up to 3200. Whereas uncertainty (resulting from random selection of observations) in percent error of true total snow volume is typically well constrained by 100–200 observations, there is considerable uncertainty in the inferred spatial distribution (R2) even at medium observation counts (200–800). We show that percent error in total snow volume is not sensitive to predictor quality, although RMSE and R2 (measures of spatial distribution) often depend critically on it. Inaccuracies of downloaded predictors (most often the vegetation predictors) can easily require a quadrupling of observation count to match RMSE and R2 scores obtained by LiDAR‐measured predictors. Under cross validation, the RMSE and R2 skill measures are consistently biased towards poorer results than their true validations. This is primarily a result of greater variance at the spatial scales of point observations used for cross validation than at the 30‐m resolution of the model. The magnitude of this bias depends on individual site characteristics, observation count (for our experimental design), and sampling design. Sampling designs that maximize independent information maximize cross‐validation bias but also maximize true R2. The bagging tree model is found to generally outperform the other regression models in the study on several criteria. Finally, we discuss and recommend use of LiDAR in conjunction with regression modelling to advance understanding of snow depth spatial distribution at spatial scales of thousands of square kilometres. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
60.
This paper assesses linear regression‐based methods in downscaling daily precipitation from the general circulation model (GCM) scale to a regional climate model (RCM) scale (45‐ and 15‐km grids) and down to a station scale across North America. Traditional downscaling experiments (linking reanalysis/dynamical model predictors to station precipitation) as well as nontraditional experiments such as predicting dynamic model precipitation from larger‐scale dynamic model predictors or downscaling dynamic model precipitation from predictors at the same scale are conducted. The latter experiments were performed to address predictability limit and scale issues. The results showed that the downscaling of daily precipitation occurrence was rarely successful at all scales, although results did constantly improve with the increased resolution of climate models. The explained variances for downscaled precipitation amounts at the station scales were low, and they became progressively better when using predictors from a higher‐resolution climate model, thus showing a clear advantage in using predictors from RCMs driven by reanalysis at its boundaries, instead of directly using reanalysis data. The low percentage of explained variances resulted in considerable underestimation of daily precipitation mean and standard deviation. Although downscaling GCM precipitation from GCM predictors (or RCM precipitation from RCM predictors) cannot really be considered downscaling, as there is no change in scale, the exercise yields interesting information as to the limit in predictive ability at the station scale. This was especially clear at the GCM scale, where the inability of downscaling GCM precipitation from GCM predictors demonstrates that GCM precipitation‐generating processes are largely at the subgrid scale (especially so for convective events), thus indicating that downscaling precipitation at the station scale from GCM scale is unlikely to be successful. Although results became better at the RCM scale, the results indicate that, overall, regression‐based approaches did not perform well in downscaling precipitation over North America. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号