首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1759篇
  免费   350篇
  国内免费   717篇
测绘学   23篇
大气科学   935篇
地球物理   473篇
地质学   375篇
海洋学   610篇
天文学   59篇
综合类   84篇
自然地理   267篇
  2024年   14篇
  2023年   37篇
  2022年   65篇
  2021年   80篇
  2020年   72篇
  2019年   80篇
  2018年   77篇
  2017年   86篇
  2016年   83篇
  2015年   93篇
  2014年   129篇
  2013年   119篇
  2012年   133篇
  2011年   126篇
  2010年   98篇
  2009年   141篇
  2008年   145篇
  2007年   175篇
  2006年   149篇
  2005年   108篇
  2004年   113篇
  2003年   98篇
  2002年   88篇
  2001年   74篇
  2000年   67篇
  1999年   54篇
  1998年   56篇
  1997年   54篇
  1996年   50篇
  1995年   42篇
  1994年   34篇
  1993年   21篇
  1992年   12篇
  1991年   6篇
  1990年   13篇
  1989年   6篇
  1988年   15篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1983年   1篇
  1980年   2篇
  1978年   1篇
排序方式: 共有2826条查询结果,搜索用时 12 毫秒
571.
为了评价有色金属矿山城市大气降尘中重金属元素的污染状况、来源及其对土壤重金属累积的影响,分析测试了铜陵市大气降尘样品中Cd元素的含量.分析结果表明,降尘样品中Cd元素的平均含量为16.44/μg/g,明显高于安徽省江淮流域多目标调查中铜陵土壤Cd元素的平均含量;降尘中Cd元素含量较高的样品出现在矿山和冶炼厂附近.用富集...  相似文献   
572.
广东2009年深秋重旱背景下异常暴雨的特点及成因   总被引:1,自引:1,他引:1  
在深秋重旱的背景下,2009年11月11~13日广东出现一次少见的暴雨过程,落区主要在干旱严重的粤北和珠江三角洲地区。分析其环流场发现,高纬西风槽东移引导较强冷空气南下,冷暖空气在华南相互作用导致本次暴雨的发生。物理量的诊断和数值模拟结果显示水汽辐合上升释放凝结潜热,对暴雨的维持起到最重要的作用。  相似文献   
573.
城镇有限场地条件下的物探找水试验   总被引:1,自引:0,他引:1  
周磊  曹创华  邓专  谭佳良  龙霞 《城市地质》2019,14(1):97-102
为在城区强干扰环境、有限场地条件下进行物探方法找水,特利用等值反磁通瞬变电磁法,在湖南郴州市某城镇进行了野外试验。在地表调查和周边人文环境基础上,常规电测深等找水有效手段在城镇区域难以施工,面对这个难题利用等值反磁通瞬变电磁法进行试验,其利用对偶中心耦合装置消除了收发线圈感应耦合来消除干扰。首先根据地质信息设计了近似南北向的4条剖面,然后进行了发射频率试验并进行单点连续探测,最后利用探测结果绘制了多测道曲线和二维模拟断面等值线图并设计了钻孔。钻探验证结果表明:等值反磁通瞬变电磁法在强干扰、场地受限的城镇区域找水效果较好,是一种值得推广的新方法。  相似文献   
574.
Oceanic heat flux(Fw) is the vertical heat flux that is transmitted to the base of sea ice. It is the main source of sea ice bottom melting. The residual method was adopted to study oceanic heat flux under sea ice. The data acquired by 28 ice mass balance buoys(IMBs) deployed over the period of 2004 to 2013 in the Arctic Ocean were used. Fw values presented striking seasonal and spatial variations. The average summer Fw values for the Canada Basin, Transpolar Drift, and Multiyear Ice area were 16.8, 7.7, and 5.9 W m^-2, respectively. The mean summer F-w for the whole Arctic was 10.1 W m^-2, which was equivalent to a bottom melt of 0.4 m. Fw showed an autumn peak in November in the presence of the near-surface temperature maximum(NSTM). The average Fw for October to December was 3.7 W m^-2. And the average Fw for January to March was 1.0 W m^-2, which was approximately one third of the average Fw in the presence of NSTM. The summer Fw was almost wholly attributed to the incident solar radiation that enters the upper ocean through leads and the open water. Fw calculated through the residual method using IMB data was compared with that calculated through the parameterization method using Autonomous Ocean Flux Buoy data. The results revealed that the Fw provided by the two methods were consistent when the sea ice concentration exceeded 70% and mixing layer temperature departure from freezing point was less than 0.15℃. Otherwise, the Fw yielded by the residual method was approximately one third smaller than that provided by the parameterization method.  相似文献   
575.
Based on hydrographic data obtained at an ice camp deployed in the Makarov Basin by the 4th Chinese Arctic Research Expedition in August of 2010, temporal variability of vertical heat flux in the upper ocean of the Makarov Basin is investigated together with its impacts on sea ice melt and evolution of heat content in the remnant of winter mixed layer(r WML). The upper ocean of the Makarov Basin under sea ice is vertically stratified. Oceanic heat flux from mixed layer(ML) to ice evolves in three stages as a response to air temperature changes, fluctuating from 12.4 W/m2 to the maximum 43.6 W/m2. The heat transferred upward from ML can support(0.7±0.3) cm/d ice melt rate on average, and daily variability of melt rate agrees well with the observed results. Downward heat flux from ML across the base of ML is much less, only 0.87 W/m2, due to enhanced stratification in the seasonal halocline under ML caused by sea ice melt, indicating that increasing solar heat entering summer ML is mainly used to melt sea ice, with a small proportion transferred downward and stored in the r WML. Heat flux from ML into r WML changes in two phases caused by abrupt air cooling with a day lag. Meanwhile, upward heat flux from Atlantic water(AW) across the base of r WML, even though obstructed by the cold halocline layer(CHL), reaches0.18 W/m2 on average with no obvious changing pattern and is also trapped by the r WML. Upward heat flux from deep AW is higher than generally supposed value near 0, as the existence of r WML enlarges the temperature gradient between surface water and CHL. Acting as a reservoir of heat transferred from both ML and AW, the increasing heat content of r WML can delay the onset of sea ice freezing.  相似文献   
576.
Analysis of sensible heat flux(Qh),latent heat flux(Qe),Richardson number(Ri),bulk transport coefficient(Cd) and katabatic winds are presented by using the meteorological data in the near surface layer from an automatic weather station(AWS) in Princess Elizabeth Land,East Antarctica ice sheet and the data of corresponding period at Zhongshan station in 2002.It shows that annual mean air temperature at LGB69 is-25.6°C,which is 16.4°C lower than that at Zhongshan,where the elevation is lower and located on the coast.The temperature lapse rate is about 1.0°C/110 m for the initial from coast to inland.The turbulence heat flux at LGB69 displays obvious seasonal variations with the average sensible heat flux-17.9 W/m2 and latent heat flux-0.9 W/m2.The intensity(Qh Qe) of coolling source is-18.8 W/m2 meaning the snow surface layer obtains heat from atmosphere.The near surface atmosphere is near-neutral stratified with bulk transport coefficients(Cd) around 2.8×10-3,and it is near constant when the wind speed higher than 8 m/s.The speed and the frequency of easterly Katabatic winds at LGB69 were higher than that at Zhongshan Station.  相似文献   
577.
Meander bends in alluvial rivers morphologically evolve towards meander cut‐off with narrowing intra‐meander necks, and this should steepen hydraulic gradients and intensify intra‐meander hyporheic flux. This research used dye tracking and head loss measurements in a 1 : 500 planimetrically scaled laboratory river table to quantify the spatial and temporal intensification of intra‐meander flux rates at two evolution ages. The younger meander bend, M1, had a sinuosity of 2.3, a river neck width of 0.39 cm, and 0.6% river slope, and the older meander bend, M3, had a sinuosity of 5.2, a river neck width of 0.12 cm, and 0.5% river slope. Flux into and out of the meander bend was estimated along the normalized curvilinear distance s*, with the meander neck at s* = 0.1 and s* = 0.9, the meander centroid at s* = 0.37 and s* = 0.63, and the apex at s* = 0.5. Between the meander centroid and neck, we documented a 60% spatial intensification for M1 and a 90% spatial intensification for M3. Between M1 and M3, we documented a 135% temporal intensification at the neck and a 100% intensification at the centroid. Our empirical spatial and temporal intensification rates involving the M1 and the M3 scenario were one to three times lower than theoretical rates derived from a river evolution model with equivalent M1 and M3 planimetry. Overestimation by the theoretical model was attributed to exaggerated head loss caused by the model neglecting groundwater contributions to river stage. Hyporheic exchange provides critical ecosystem services, and its spatial and temporal variation with meander evolution should be considered in river management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
578.
The carbon cycle of terrestrial ecosystems is an important scientific issue in global climate change re- search. Plantation forest plays an important role in terrestrial carbon budget in China. In this study, eddy covariance flux data measured at Xiaolangdi forest ecosystem research station (XLD) in 2007 and 2008 are used to analyze the seasonal variation and meteorological control of CO2 flux in a 30-yr-old mixed plantation. The plantation forest mainly consists of Quercus variabilis, Platycladus orientalis, and Robinia pseudoacacia. The results show that the seasonal variations of net ecosystem exchange of CO2 (NEE), gross primary production (GPP), and ecosystem respiration (Re) display single-peak curves. The maximum of carbon sequestration appears during May and June each year. The relative contribution of carbon re- lease from ecosystem respiration to GPP varied slightly between 2007 and 2008. The relationship between NEE and photosynthetic active radiation (Qp) accords with the rectangular hyperbola model on diurnal scale, and shows a good linear correlation on monthly scale. The ecosystem photosynthetic parameters: the maximum photosynthetic rate (Pmax), the ecosystem photosynthetic photonyield (α), and the daytime ecosystem respiration (Rd) exhibit seasonal variations. Pmax reaches the maximum in August each year, with small interannual di?erence. The interannual differences of α and Rd are obvious, which is attributed to the changes of meteorological factors, such as solar radiation, vapor pressure deficit (D), precipitation, etc. Parameters Re, GPP, and NEP (net ecosystem production) have obvious exponential relations with temperature on monthly scale. There is a hysteresis in the response of GPP and NEP to temperature, i.e., the carbon sequestration is not the maximum when the temperature reaches the peak value. The Q10 values were 1.37 and 1.45 in 2007 and 2008, respectively. On monthly scale, Re, GPP, and NEE increase as D increases, but rise slowly and even decrease when D is higher than 1.5 kPa.  相似文献   
579.
Data on riverine fluxes are essential for calculating element cycles (carbon, nutrients, pollutants) and erosion rates from regional to global scales. At most water‐quality stations throughout the world, riverine fluxes are calculated from continuous flow data (q) and discrete concentration data (C), the latter being the main cause of sometimes large uncertainties. This article offers a comprehensive approach for predicting the magnitude of these uncertainties for water‐quality stations in medium to large basins (drainage basin area > 1000 km²) based on the commonly used discharge‐weighted method. Uncertainty levels – biases and imprecisions – for sampling intervals of 3 to 60 days are correlated first through a nomograph with a flux variability indicator, the quantity of riverine material discharged in 2% of time (M2%). In turn, M2% is estimated from the combination of a hydrological reactivity index, W2% (the cumulative flow volume discharged during the upper 2% of highest daily flow) and the truncated b50sup exponent, quantifying the concentration versus discharge relationship for the upper half of flow values (C = a q b50sup, for q > q50, where q50 is the median flow): M2% = W2% + 27.6b50sup. W2% can be calculated from continuous flow measurements, and the b50sup indicator can be calculated from infrequent sampling, which makes it possible to predict a priori the level of uncertainty at any station, for any type of riverine material either concentrated (b50sup > 0) or diluted (b50sup > 0) with flow. A large data base of daily surveys, 125 station variables of suspended particulate matter (SPM), total dissolved solids (TDS) and dissolved and particulate nutrients, was used to determine uncertainties from simulated discrete surveys and to establish relationships between indicators. Results show, for example, that for the same relatively reactive basin (W2% > 25%), calculated fluxes from monthly sampling would yield uncertainties approaching ±100% for SPM (b50sup > 1.4) fluxes and ±10% for TDS (b50sup = ?0.2). The application to the nitrate survey of the river Seine shows significant trends for the 1972–2009 records. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
580.
东亚夏季风期间水汽输送与西北干旱的关系   总被引:18,自引:18,他引:18  
利用西北(区)168个测站1961—2000年6~9月月平均降水与温度资料,采用EOF、REOF方法分析了近40年降水异常特征,同时利用同期NCEP/NCAR月平均再分析资料,分析了强(弱)夏季风年西北区水汽通量场的特征及夏季风西北影响区的净水汽通量。结果表明:西北区6~9月降水可分为7个气候异常区;东亚夏季风对我国降水的影响主要位于100°E以东的地区;东亚夏季风西北影响区降水的水汽来源于南风水汽通量;强夏季风年,到达东亚夏季风西北影响区的水汽通量显著增加,该区降水偏多,弱夏季风年则反之。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号