首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   576篇
  免费   151篇
  国内免费   28篇
测绘学   8篇
地球物理   267篇
地质学   357篇
海洋学   32篇
天文学   8篇
综合类   11篇
自然地理   72篇
  2024年   4篇
  2023年   5篇
  2022年   13篇
  2021年   32篇
  2020年   41篇
  2019年   30篇
  2018年   31篇
  2017年   42篇
  2016年   31篇
  2015年   30篇
  2014年   35篇
  2013年   63篇
  2012年   34篇
  2011年   29篇
  2010年   25篇
  2009年   36篇
  2008年   30篇
  2007年   17篇
  2006年   16篇
  2005年   26篇
  2004年   31篇
  2003年   7篇
  2002年   18篇
  2001年   20篇
  2000年   25篇
  1999年   16篇
  1998年   10篇
  1997年   18篇
  1996年   8篇
  1995年   9篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   3篇
  1990年   3篇
  1988年   1篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
排序方式: 共有755条查询结果,搜索用时 15 毫秒
91.
The last glacial shows large variations in climate, which are reflected in the fluvial record in the Niederlausitz, eastern Germany. The entire sequence resembles the fluvial development in other river basins in northwestern Europe, which show contemporaneous changes in depositional style at the onset of a climatic change. During the Middle and the Late Pleniglacial, permafrost conditions resulted in an episodic river discharge. The presence or absence of vegetation, in combination with such ephemeral stream conditions, determined the type of river during each period. A relatively well-developed vegetation cover on the flood plains during the Middle Pleniglacial resulted in a low sediment yield. In combination with the intermittent discharge, this caused the development of an ephemeral anastomosing river system, a river with stable channels and extensive sandy overbank areas. The decline in vegetation cover at ca. 28 ka BP caused an increase in sediment yield and peak discharges, which resulted in the development of a sandy braided river in adjustment to these new conditions. Following the coldest period at around 20 ka, precipitation was so low that fluvial activity was limited and aeolian deposition took place in the valley. © 1997 by John Wiley & Sons, Ltd.  相似文献   
92.
A morphometric comparison of valleys has been made for the Ben Ohau Range in the central Southern Alps of New Zealand. The range is undergoing rapid tectonic transport and uplift. The humid north of the range is a glacial trough-and-arête landscape, with a temperate glacial climate. The dry south has rounded divides and plateau remnants dissected by fluvial valleys. Assuming that space–time substitution allows today's spatial valley-form transition to represent evolutionary stages in valley development, the tectonic history allows time constraints to be placed on the rate of transition to an alpine glacial landscape. Morphometric change has been quantified using hypsometric curves, and distance–elevation plots of cirque and valley-floor altitudes. Ancestral fluvial valleys have less concave long profiles but are stepped at altitude owing to the presence of high-level cirques and remnant plateau surfaces, and possess a low proportion of land area at low elevation. Increasing glacial influence is manifest as smoother, more deeply concave long profiles and U-shaped cross-profiles associated with a higher proportion of the land area at lower elevation. The full morphological transition has involved up to 2.4 km of vertical denudation over the 4 Ma lifetime of the mountain range, of which 80 per cent would have occurred by preglacial fluvial erosion. Combining the trajectory of tectonic transport with reconstructed glaciation limits and climatic history, it is indicated that about 200 ka of temperate glacial erosion produces recognizable trough-and areête topography. Mean and modal relief increase where glacial activity is confined to cirques, but decrease when trough incision by ice becomes established as a dominant process in the landscape. © 1997 by John Wiley & Sons, Ltd.  相似文献   
93.
During the last 160 years, land-use changes in the Ozarks have had the potential to cause widespread, low-intensity delivery of excess amounts of gravel-sized sediment to stream channels. Previous studies have indicated that this excess gravel bedload is moving in wave-like forms through Ozarks drainage basins. The longitudinal, areal distribution of gravel bars along 160 km of the Current River, Missouri, was evaluated to determine the relative effects of valley-scale controls, tributary basin characteristics, and lagged sediment transport in creating areas of gravel accumulations. The longitudinal distribution of gravel-bar area shows a broad scale wave-like form with increases in gravel-bar area weakly associated with tributary junctions. Secondary peaks of gravel area with 1·8–4·1 km spacing (disturbance reaches) are superimposed on the broad form. Variations in valley width explain some, but not all, of the short-spacing variation in gravel-bar area. Among variables describing tributary drainage basin morphometry, present-day land use and geologic characteristics, only drainage area and road density relate even weakly to gravel-bar areal inventories. A simple, channel network-based sediment routing model shows that many of the features of the observed longitudinal gravel distribution can be replicated by uniform transport of sediment from widespread disturbances through a channel network. These results indicate that lagged sediment transport may have a dominant effect on the synoptic spatial distribution of gravel in Ozarks streams; present-day land uses are only weakly associated with present-day gravel inventories; and valley-scale characteristics have secondary controls on gravel accumulations in disturbance reaches. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
94.
The particle size of the bed sediments in or on many natural streams, alluvial fans, laboratory flumes, irrigation canals and mine waste deltas varies exponentially with distance along the stream. A plot of the available worldwide exponential bed particle size diminution coefficient data against stream length is presented which shows that all the data lie within a single narrow band extending over virtually the whole range of stream lengths and bed sediment particle sizes found on Earth. This correlation applies to both natural and artificial flows with both sand and gravel beds, irrespective of either the solids concentration or whether normal or reverse sorting occurs. This strongly suggests that there are common mechanisms underlying the exponential diminution of bed particles in subaerial aqueous flows of all kinds. Thus existing models of sorting and abrasion applicable to some such flows may be applicable to others. A comparison of exponential laboratory abrasion and field diminution coefficients suggests that abrasion is unlikely to be significant in gravel and sand bed streams shorter than about 10 km to 100 km, and about 500 km, respectively. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
95.
Organic carbon (OC) associated with fluvial bed sediment plays an important role in biotic and abiotic processes operating within drainage basins. Increasingly, there is a need to characterize storage and spatial distributions of OC in aquatic sediments, particularly under-sampled areas like tropical streams. The objectives of this study were to examine in detail the variation of OC concentration with bed sediment grain size, to characterize the influence of grain size variation on relative OC mass storage, and to compare weighted OC values to those in other aquatic sediments worldwide. The study area selected was a third-order dendritic drainage basin developed in a basaltic complex. Bed sediments along a 6 km section of Manoa Stream were systematically sampled every 50 m for a total of 113 sample site locations. Sediments were partitioned into six size fractions (< 2·0 mm) and OC was determined by dry combustion. Data indicate that the OC concentration increases with decreasing grain size, with the greatest values in the < 0·063 mm (silt + clay) fraction, approximately 4·6 times greater than the very coarse sand fraction (1·00–2·00 mm). Robust smoothing techniques illustrated a general decrease in OC concentration downstream for the size fractions < 0·25 mm. Bed sediments were dominated by size fractions coarser than 0·5 mm (80 per cent of the total distribution) and only about 2 per cent in the fractions less than 0·13 mm. Combining information on OC concentration per size fraction and the mass contribution of each fraction to the whole sample, it was observed that fractions coarser than 0·5 mm had eight to 12 times the storage of OC per kilogram of bed sediments than the fractions finer than 0·13 mm. Weighted OC values for Manoa Stream were on average 6·7 g-OC kg−1, and these were similar to those reported in the literature for a variety of sediments in aquatic environments, both freshwater and marine. These data provide important information on the relative mass storage of OC in bed sediments and their longitudinal patterns in a tropical fluvial environment. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   
96.
Multivariate statistical analyses of geomorphic variables from 23 forest stream reaches in southeast Alaska result in successful discrimination between pristine streams and those disturbed by land management, specifically timber harvesting and associated road building. Results of discriminant function analysis indicate that a three-variable model discriminates 10 disturbed from 13 undisturbed reaches with 90 per cent and 92 per cent correct classification respectively. These variables are the total number of pools per reach, the ratio of mean residual pool depth to mean bankfull depth, and the ratio of critical shear stress of the median surface grain size to bankfull shear stress. The last variable can be dropped without a decrease in rate of correct classification; however, the resulting two-variable model may be less robust. Analysis of the distribution of channel units, including pool types, can also be used to discriminate disturbed from undisturbed reaches and is particularly useful for assessment of aquatic habitat condition. However, channel unit classification and inventory can be subject to considerable error and observer bias. Abundance of pool-related large woody debris is highly correlated with pool frequency and is an important factor determining channel morphology. Results of this study yield a much needed, objective, geomorphic discrimination of pristine and disturbed channel conditions, providing a reference standard for channel assessment and restoration efforts.  相似文献   
97.
通过对祁连山东段童子坝河各级阶地的年代和变形程度进行测定,得到了河流阶地的形成年代和过程,推算出民乐—大马营逆断裂的活动强度和速率,并分析了阶地形成和气候变化之间的关系。童子坝河5级阶地(年龄分别为16.70±1.81 cal,ka BP、 10 092.5±27.5 cal a BP、8127.5±72.5 cal a BP、2900±60 cal a BP、282.5±17.5 cal a BP)均形成于气候由冷转暖的阶段,属于气候成因阶地。基于断裂两侧阶地面的平面几何形态并结合上、下盘阶地横剖面同级阶地的高差,得到T4、T3、T2和T1阶地在民乐—大马营断裂处的垂直位错分别为10.6±3.1,m、5.0±2.6 m、2.0±1.9 m和1.9±1.3 m,推算出全新世以来民乐—大马营断裂的垂直滑动速率为1.05±0.31 mm/a,水平缩短速率为1.02±0.60 mm/a。  相似文献   
98.
Much research has been devoted to the development of numerical models of river incision. In settings where bedrock channel erosion prevails, numerous studies have used field data to calibrate the widely acknowledged stream power model of incision and to discuss the impact of variables that do not appear explicitly in the model's simplest form. However, most studies have been conducted in areas of active tectonics, displaying a clear geomorphic response to the tectonic signal. Here, we analyze the traces left in the drainage network 0.7 My after the Ardennes region (western Europe) underwent a moderate 100–150 m uplift. We identify a set of knickpoints that have traveled far upstream in the Ourthe catchment, following this tectonic perturbation. Using a misfit function based on time residuals, our best fit of the stream power model parameters yields m = 0.75 and K = 4.63 × 10‐8 m‐0.5y‐1. Linear regression of the model time residuals against quantitative expressions of bedrock resistance to erosion shows that this variable does not correlate significantly with the residuals. By contrast, proxies for position in the drainage system prove to be able to explain 76% of the residual variance. High time residuals correlate with knickpoint position in small tributaries located in the downstream part of the Ourthe catchment, where some threshold was reached very early in the catchment's incision history. Removing the knickpoints stopped at such thresholds from the data set, we calculate an improved m = 0.68 and derive a scaling exponent of channel width against drainage area of 0.32, consistent with the average value compiled by Lague for steady state incising bedrock rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
99.
River ecological functioning can be conceptualized according to a four‐dimensional framework, based on the responses of aquatic and riparian communities to hydrogeomorphic constraints along the longitudinal, transverse, vertical and temporal dimensions of rivers. Contemporary riparian vegetation responds to river dynamics at ecological timescales, but riparian vegetation, in one form or another, has existed on Earth since at least the Middle Ordovician (c. 450 Ma) and has been a significant controlling factor on river geomorphology since the Late Silurian (c. 420 Ma). On such evolutionary timescales, plant adaptations to the fluvial environment and the subsequent effects of these adaptations on fluvial sediment and landform dynamics resulted in the emergence, from the Silurian to the Carboniferous, of a variety of contrasted fluvial biogeomorphic types where water flow, morphodynamics and vegetation interacted to different degrees. Here we identify several of these types and describe the consequences for biogeomorphic structure and stability (i.e. resistance and resilience), along the four river dimensions, of feedbacks between riparian plants and hydrogeomorphic processes on contrasting ecological and evolutionary timescales. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
100.
Channelization of the severely polluted Odra and Vistula Rivers in Poland induced intensive accumulation of fine‐grained deposits rich in organic matter and heavy metals. These sediments have been identified in vertical profiles in a narrow zone along river banks both in groyne‐created basins and on the floodplain. Grain size, organic matter, zinc (Zn), lead (Pb), copper (Cu) content and cesium‐137 (137Cs) was used for sediment dating and, stratigraphy and chemistry have been diagnostic features for these deposits, named industrial alluvium. In the most polluted river reaches stabilized by bank reinforcements and groynes, 2‐m‐thick slack water groyne deposits are composed of uniform strata of polluted silts with organic matter content over 10%, Zn content over 1000 mg/kg and average Cu and Pb over 100 mg/kg. The average rate of sediment accretion in groynes is higher than on the floodplain and reaches 5 cm/yr. Stratification which appears at higher levels in the groyne fields and on the levees reflects a change from in‐channel to overbank deposition and is typified by dark layers separated by bright, sandy, and less polluted strata. Stratified, 4‐m‐thick, sediment sequences have been found in groyne fields of incised river reaches. The average rate of sediment accretion in these reaches is of the order of 5 cm/yr. In stable and relatively less polluted river reaches, vertical‐accretion organic deposits are finely laminated and the average rate of deposition amounts to a few millimeters per year. Investigations indicate that groyne construction favors conditions for long‐term storage of sediments at channel banks. For this reason, groynes should be considered as structures that efficiently limit sudden release of sediment‐associated heavy metals stored in channels and in floodplains of the historically polluted rivers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号