首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2122篇
  免费   401篇
  国内免费   584篇
测绘学   9篇
大气科学   21篇
地球物理   368篇
地质学   1912篇
海洋学   322篇
天文学   11篇
综合类   88篇
自然地理   376篇
  2024年   4篇
  2023年   21篇
  2022年   62篇
  2021年   56篇
  2020年   72篇
  2019年   61篇
  2018年   67篇
  2017年   50篇
  2016年   73篇
  2015年   65篇
  2014年   93篇
  2013年   132篇
  2012年   118篇
  2011年   80篇
  2010年   83篇
  2009年   114篇
  2008年   135篇
  2007年   180篇
  2006年   159篇
  2005年   134篇
  2004年   153篇
  2003年   119篇
  2002年   114篇
  2001年   105篇
  2000年   124篇
  1999年   105篇
  1998年   85篇
  1997年   87篇
  1996年   90篇
  1995年   80篇
  1994年   49篇
  1993年   51篇
  1992年   37篇
  1991年   26篇
  1990年   26篇
  1989年   22篇
  1988年   15篇
  1987年   16篇
  1986年   10篇
  1985年   8篇
  1984年   4篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1978年   4篇
  1977年   5篇
排序方式: 共有3107条查询结果,搜索用时 15 毫秒
11.
SeaMARC II side-scan images, bathymetry, and single-channel seismic reflection data along the southern Peru—northern Chile forearc area between 16° and 23° S reveal a complex region of morpho-structural, submarine drainage and depression patterns. In the subducting plate area, the NW—SE trending primary normal fault system represented by trench-paralleled scarps was incipiently formed as the Nazca Plate was bent in the outer edge and further intensified as the plate approached the trench. The NE—SW trending secondary normal fault system that consists of discontinuous and smaller faults, usually intersect the primary trench-paralleled fault system. Similar to the Nazca Plate, the overriding continental plate also shows two major NW—SE and NE—SW trending fault systems represented by fault scarps or narrow elongated depressions.The submarine drainage systems represented by a series of canyon and channel courses appear to be partly controlled by the faults and exhibit a pattern similar to the onshore drainage which flows into the central region of the coastal area. Two large depressions occurring along the middle—upper slope areas of the continental margin are recognized as collapse and slump that perhaps are a major result of increased slope gradient. The subsidence of the forearc area in the southern Peru—northern Chile Continental Margin is indicated by: a) drainage systems flowing into the central region, b) the slope collapse and slumps heading to the central region, c) the deepening of the trench and inclining of the lower slope terrace to the central region, and d) submerging of the upper-slope ridge and the Peru—Chile Coast Range off the Arica Bight area.The subsidence of the forearc area in the southern Perunorthern Chile margin is probably attributed to a subduction erosion which causes wearing away and removal of the rock and sedimentary masses of the overriding plate as the Nazca Plate subducts under the South American Plate.  相似文献   
12.
根据249个表层沉积物样品的Ca,Al,N,P,Mg,Fe,Mn,Ti和有机碳的测定数据,利用稳健RQ型主分量分析及Q型聚类分析方法,对珠江口外陆架表层沉积物进行了地球化学分类,并将该陆架区划分成陆源细碎屑沉积区、经叠加改造的残留泥砂质沉积区、生物碎屑沉积区以及高能环境下的石英砂质沉积区。结果表明了稳健统计方法相对于传统统计方法的优越性,以及采用稳健主分量的Q载荷进行聚类分析相对于用原始变量进行聚类分析的优越性。  相似文献   
13.
Two distinct series of slumps deform the upper part of the sedimentary sequence along the continental margin of the Levant. One series is found along the base of the continental slope, where it overlies the disrupted eastern edge of the Messinian evaporites. The second series of slumps transects the continental margin from the shelf break to the Levant Basin. It seemed that the two series were triggered by two unrelated, though contemporaneous, processes. The shore-parallel slumps were initiated by basinwards flow of the Messinian salt, that carried along the overlying Plio-Quaternary sediments. Seawater that percolated along the detachment faults dissolved the underlying salt to form distinctly disrupted structures. The slope-normal slumps are located on top of large canyons that cut into the pre-Messinian sedimentary rocks. A layer of salt is found in the canyons, and the Plio-Quaternary sediments were deposited on that layer. The slumps are bounded by large, NW-trending faults where post-Messinian faulted offset was measured. We presume that the flow of the salt in the canyons also drives the slope-normal slumps. Thus thin-skinned halokynetic processes generated the composite post-Tortonian structural patterns of the Levant margin. The Phoenician Structures are a prime example of the collapse of a distal continental margin due to the dissolution of a massive salt layer.  相似文献   
14.
大陆岩石圈在张裂和分离时的变形模式   总被引:4,自引:0,他引:4  
通过对南海南北共轭边缘地壳剖面的对比研究,发现大陆岩石圈的物理性质是分层的:上、中地壳呈脆性,下地壳表现出塑性,而岩石圈上地幔则仍呈脆性。因此,在它受张性应力场作用时,其变形和破裂分离方式也是分层进行的:上、中地壳能发生犁式断裂,产生的断块沿断面转动在地表产生一系列半地堑,并使地壳厚度减薄;如拉张应力继续作用时,上、中地壳将沿犁式断裂被拉开,从而形成上、下板块边缘,并彼此分开。下地壳则发生塑性变形,使地壳厚度减薄,并最终将其拉断。岩石圈上地幔亦可产生陡倾断裂,形成的断块沿断面转动亦使其厚度减薄,并最终沿陡倾断裂被拉断。这就是我们称之为岩石圈变形和破裂分 离时的分层变形及分层破裂分离模式。  相似文献   
15.
Crustal Thinning of the Northern Continental Margin of the South China Sea   总被引:2,自引:0,他引:2  
Magnetic data suggest that the distribution of the oceanic crust in the northern South China Sea (SCS) may extend to about 21 °N and 118.5 °E. To examine the crustal features of the corresponding continent–ocean transition zone, we have studied the crustal structures of the northern continental margin of the SCS. We have also performed gravity modeling by using a simple four-layer crustal model to understand the geometry of the Moho surface and the crustal thicknesses beneath this transition zone. In general, we can distinguish the crustal structures of the study area into the continental crust, the thinned continental crust, and the oceanic crust. However, some volcanic intrusions or extrusions exist. Our results indicate the existence of oceanic crust in the northernmost SCS as observed by magnetic data. Accordingly, we have moved the continent–ocean boundary (COB) in the northeastern SCS from about 19 °N and 119.5 °E to 21 °N and 118.5 °E. Morphologically, the new COB is located along the base of the continental slope. The southeastward thinning of the continental crust in the study area is prominent. The average value of crustal thinning factor of the thinned continental crust zone is about 1.3–1.5. In the study region, the Moho depths generally vary from ca. 28 km to ca. 12 km and the crustal thicknesses vary from ca. 24 km to ca. 6 km; a regional maximum exists around the Dongsha Island. Our gravity modeling has shown that the oceanic crust in the northern SCS is slightly thicker than normal oceanic crust. This situation could be ascribed to the post-spreading volcanism or underplating in this region.  相似文献   
16.
The interstitial water composition ( , alkalinity, Ca2+, Mg2+, Sr2+, Na+, K+) and the cation exchange capacity (CEC) were determined for the muddy sediments of the continental shelf off the Gironde Estuary (France), in the area where the sediment represents the deposit of the muddy suspension of the river. In comparison with seawater concentrations, the pore waters below 10 cm depth, show depletions of and Ca2+ and below a 30 cm depth show depletions of Mg2+. Inversely, the upper 10 cm an enrichment of Ca2+ concentration, and an increase of K+ concentration to a 40 cm depth. High values of are observed at the top 4 cm. Alkalinity enrichment is observed along the length of the core. Applying the alkalinity models for the sediment below a 10 cm depth demonstrates generally that calculated alkalinities are higher than the measured ones. Ca2+ dissolution occurs at the first 10 cm and authigenic carbonate precipitation starts beneath that level. Mg2+ depletion is accompanied by bicarbonate loss. This proves that Mg2+ depletion is due to a Mg-silicate reaction. The result of the CEC does not confirm the Mg2+ uptake by clay minerals in exchangeable site, under reducing conditions. Diffusion and bioturbation play an important role in the pore water concentration at the top of the core.  相似文献   
17.
As a fundamental study to evaluate the contribution of the Kuroshio to primary production in the East China Sea (ECS), we investigated the seasonal pattern of the intrusion from the Kuroshio onto the continental shelf of the ECS and the behavior of the intruded Kuroshio water, using the RIAM Ocean Model (RIAMOM). The total intruded volume transport across the 200m isobath line was evaluated as 2.74 Sv in winter and 2.47 Sv in summer, while the intruded transport below 80m was estimated to be 1.32 Sv in winter and 1.64 Sv in summer. Passive tracer experiments revealed that the main intrusion from the Kuroshio to the shelf area of the ECS, shallower than 80m, takes place through the lower layer northeast of Taiwan in summer, with a volume transport of 0.19 Sv. Comparative studies show several components affecting the intrusion of the Kuroshio across the 200 m isobath line. The Kuroshio water intruded less onto the shelf compared with a case without consideration of tide-induced bottom friction, especially northeast of Taiwan. The variations of the transport from the Taiwan Strait and the east of Taiwan have considerable effects on the intrusion of the Kuroshio onto the shelf.  相似文献   
18.
弧后盆地的形成与演化探讨:以东亚陆缘区为例   总被引:3,自引:2,他引:3  
通过对弧后盆地大地构造体制的讨论,作者认为基属活化作用的产物根据地质,地球物理,地球化学等资料的分析,作者提出结论认为,由于东亚岛弧系岩石圈的均衡作用及海沟外侧冷却大洋岩石圈块体的下沉拖曳牵引等作用,使软流圈在岛弧系下方发生分异,这种分异作用带动东亚陆缘向东扩张,从而产生弧后的张开。  相似文献   
19.
A preliminary study of carbon system in the East China Sea   总被引:1,自引:0,他引:1  
In the central part of the East China Sea, the activity of CO2 in the surface water and total carbonate, pH and alkalinity in the water column were determined in winter and autumn of 1993. The activity of CO2 in the continental shelf water was about 50 ppm lower than that of surface air. This decrease corresponds to the absorption of about 40 gC/m2/yr of atmospheric CO2 in the coastal zone or 1 GtC/yr in the global continental shelf, if this rate is applicable to entire coastal seas. The normalized total carbonate contents were higher in the water near the coast and near the bottom. This increase toward the bottom may be due to the organic matter deposited on the bottom. This conclusion is supported by the distribution of pH. The normalized alkalinity distribution also showed higher values in the near-coast water, but in the surface water, indicating the supply of bicarbonate from river water. The residence time of the East China Sea water, including the Yellow Sea water, has been calculated to be about 0.8 yr from the excess alkalinity and the alkalinity input. Using this residence time and the excess carbonate, we can estimate that the amount of dissolved carbonate transported from the coastal zone to the oceanic basin is about 70 gC/m2/yr or 2 GtC/yr/area-of-global-continental-shelf. This also means that the rivers transport carbon to the oceans at a rate of 30 gC/m2/yr of the coastal sea or 0.8 GtC/yr/ area-of-global shelf, the carbon consisting of dissolved inorganic carbonate and terrestrial organic carbon decomposed on the continental shelf.  相似文献   
20.
Transverse ridges are elongate reliefs running parallel and adjacent to transform/fracture zones offsetting mid-ocean ridges. A major transverse ridge runs adjacent to the Vema transform (Central Atlantic), that offsets the Mid-Atlantic Ridge by 320 km. Multibeam morphobathymetric coverage of the entire Vema Transverse ridge shows it is an elongated (300 km), narrow (<30 km at the base) relief that constitutes a topographic anomaly rising up to 4 km above the predicted thermal contraction level. Morphology and lithology suggest that the Vema Transverse ridge is an uplifted sliver of oceanic lithosphere. Topographic and lithological asymmetry indicate that the transverse ridge was formed by flexure of a lithospheric sliver, uncoupled on its northern side by the transform fault. The transverse ridge can be subdivided in segments bound by topographic discontinuities that are probably fault-controlled, suggesting some differential uplift and/or tilting of the different segments. Two of the segments are capped by shallow water carbonate platforms, that formed about 3–4 m.y. ago, at which time the crust of the transverse ridge was close to sea level. Sampling by submersible and dredging indicates that a relatively undisturbed section of oceanic lithosphere is exposed on the northern slope of the transverse ridge. Preliminary studies of mantle-derived ultramafic rocks from this section suggest temporal variations in mantle composition. An inactive fracture zone scarp (Lema fracture zone) was mapped south of the Vema Transverse ridge. Based on morphology, a fossil RTI was identified about 80 km west of the presently active RTI, suggesting that a ridge jump might have occurred about 2.2 m.a. Most probable causes for the formation of the Vema Transverse ridge are vertical motions of lithospheric slivers due to small changes in the direction of spreading of the plates bordering the Vema Fracture Zone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号