Verdenskrigen som efterhånden i do krigførende land tok alle hjelpemidler og all intelligens i sin tjeneste og innskrenket den frie samferdsel selv for de nøitrale stater, måtte selvfølgelig legge hindringer i veien for forskningsekspedisjoner til Asia. De stoppet velikke helt op. Som vi skal se blev der også under krigen foretatt og begynt undersøkelser av denne art; men først efter krigen utviklet de sig igjen i større stil. Det synes derfor å være naturlig å velge denne verdenskatastrofe som et skille, og jeg vil i det følgende mere utførlig omtale bare de ekspedisjoner og forskninger, som vesentlig er blitt utført efter denne tid. 相似文献
利用兰州大学半干旱气候与环境观测站(SACOL)的观测资料,分析了陇中黄土高原夏季陆面辐射和热量收支的特征.通过研究不同典型天气条件对陆面过程微气象特征的影响,发现地表反射率在晴天会出现早晨偏大的不对称结构;晴天与多云天气相比不平衡量较大,而阴天时的阵性降水会使局地能量收支出现不平衡.利用最小二乘法(OLS)线性回归得到的夏季平均不闭合度是19.6%.在半干旱区云和降水对辐射和能量收支的影响不容忽视,达到约25%的削弱程度,比极端干旱的敦煌荒漠区要大,又进一步证明了半干旱区夏季的平均气候特征与云量较多的多云天气(5≤Mean total cloud amount<8)接近.另外,7月日平均波恩比最大是4.1,平均是1.95,比极端干旱区的敦煌波恩比小1个数量级,说明榆中所处的黄土高原半干旱区比敦煌所处的极端干旱区在气候上要湿润很多. 相似文献
By use of 1948-2007 NCEP/NCAR reanalysis monthly geopotential data, a set of circulation indices are defined to characterize the polar vortex at 10 hPa in the Southern Hemisphere, including area-(S), intensity-(P) and centre position-(λc , φc) indices. Sea-sonal variation, interannual anomalies and their possible causes of 10 hPa polar vortex in the Southern Hemisphere are analyzed by using these indices, the relationship between 10 hPa polar vortex strength and the Antarctic Oscillation are analyzed as well. The results show that: (1) the polar region at 10 hPa in the Southern Hemisphere is controlled by anticyclone (cyclone) from Dec. to Jan. (from Mar. to Oct.), Feb. and Nov. are circulation transition seasons. (2) Intensity index (P) and area index (S) of anticy-clone (cyclone) in Jan. (Jul.) show a significant spike in the late 1970s, the anticyclone (cyclone) enhances (weakens) from ex-tremely weak (strong) oscillation to near the climatic mean before a spike, anticyclone tends to the mean state from very strong oscillation and cyclone oscillates in the weaker state after the spike. (3) There is significant interdecadal change for the anticyclone center in Jan., while markedly interannual variation for cyclone center in July. (4) The ozone anomalies can cause the interannual anomaly of the polar anticyclone at 10 hPa in the Southern Hemisphere in Jan. (positive correlation between them), but it is not related to the polar cyclone anomalies. (5) There is notable negative correlation between the polar vortex intensity index P and the Antarctic Oscillation index (AAOI), thus AAOI can be represented by P. 相似文献
In order to examine high-frequency variations of East Asian winter monsoon in Quaternary climatic extremes, two typical loess–paleosol sequences in the Chinese Loess Plateau were investigated. Sandy layers in the loess deposits, the “Upper sand” and “Lower sand” (layers L9 and L15, respectively), which represent a high-resolution record of paleomonsoon changes, have been sampled at intervals of 5–6 cm from sections at Luochuan and Xifeng. The grain size and magnetic susceptibility was measured for all samples. The grain-size results (a proxy of winter monsoon strength) indicate that the winter monsoon strength fluctuated on a millennial timescale during cold climatic extremes, with climatic events of a few hundred to a few thousand years. However, the winter monsoon was relatively stable during warm periods. The magnetic susceptibility signal (a proxy of summer monsoon intensity) is practically constant over the same period. This is tentatively explained by the assumption that the summer monsoon intensity was too low to be recorded in the magnetic susceptibility signal. The intensified winter monsoon events show periodicities in a range of 1000 to 2770 yr, with a dominant cycle of approximately 1450 yr. The detection of this oscillation in older glacial stages strongly suggests that it may be a pervasive cycle of the cold climatic phases of the Quaternary. Millennial-scale variations of the winter monsoon may be caused by instability of the westerly jet, which is determined by temperature differences between the polar and the equatorial regions. 相似文献