首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   667篇
  免费   429篇
  国内免费   279篇
测绘学   33篇
大气科学   747篇
地球物理   138篇
地质学   125篇
海洋学   243篇
天文学   2篇
综合类   43篇
自然地理   44篇
  2025年   6篇
  2024年   50篇
  2023年   36篇
  2022年   38篇
  2021年   58篇
  2020年   49篇
  2019年   51篇
  2018年   48篇
  2017年   50篇
  2016年   58篇
  2015年   77篇
  2014年   75篇
  2013年   69篇
  2012年   49篇
  2011年   66篇
  2010年   56篇
  2009年   66篇
  2008年   58篇
  2007年   72篇
  2006年   68篇
  2005年   60篇
  2004年   56篇
  2003年   33篇
  2002年   27篇
  2001年   20篇
  2000年   16篇
  1999年   9篇
  1998年   9篇
  1997年   13篇
  1996年   3篇
  1995年   10篇
  1994年   9篇
  1993年   4篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有1375条查询结果,搜索用时 15 毫秒
961.
    
The Hybrid Coordinate Ocean Model(HYCOM) uses different vertical coordinate choices in different regions. In HYCOM, the prognostic variables include not only the seawater temperature, salinity and current fields, but also the layer thickness. All prognostic variables are usually adjusted in the assimilation when multivariate data assimilation methods are used to assimilate sea surface temperature(SST). This paper investigates the effects of SST assimilation in a global HYCOM model using the Ensemble Optimal Interpolation multivariate assimilation method. Three assimilation experiments are conducted from 2006–08. In the first experiment, all model variables are adjusted during the assimilation process. In the other two experiments, the temperature alone is adjusted in the entire water column and in the mixed layer. For comparison, a control experiment without assimilation is also conducted. The three assimilation experiments yield notable SST improvements over the results of the control experiment. Additionally, the experiments in which all variables are adjusted and the temperature alone in all model layers is adjusted, produce significant negative effects on the subsurface temperature. Also, they yield negative effects on the subsurface salinity because it is associated with temperature and layer thickness. The experiment adjusting the temperature alone in the mixed layer yields positive effects and outperforms the other experiments. The heat content in the upper 300 m and 300–700 m layers further suggests that it yields the best performance among the experiments.  相似文献   
962.
朱浩楠  闵锦忠  杜宁珠 《大气科学》2016,40(5):995-1008
基于前后张驰逼近(Back and Forth Nudging,简称BFN)和集合卡尔曼滤波(EnKF)方法,构建了一种新的同化方法HBFNEnKF(Hybrid Back and Forth Nudging EnKF)混合同化方法,并将此同化系统分别与通道浅水模式(shallow water model)和全球浅水模式对接,检验了HBFNEnKF同化方法的有效性。同时,对比了集合均方根滤波(EnSRF)、HNEnKF (Hybrid Nudging EnKF)、HBFNEnKF三种方法在有误差模式中的同化效果。试验结果表明:HBFNEnKF同化方法保留了HNEnKF方法的同化连续性,解决了EnKF同化不连续不平滑的问题,同时还有着更快的收敛速度;当采用单变量分析试验时,HBFNEnKF方法的优势最为明显,表明HBFNEnKF能够较好地保持不同模式变量间的平衡。此外,增量场尺度分析结果表明:相比EnSRF,HBFNEnKF在大尺度范围有更好的同化效果,同时能够避免在中小尺度范围内出现大量的虚假增量。  相似文献   
963.
    
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The “observation” of the SST anomaly, which is sampled from a “truth” model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.  相似文献   
964.
The default fractional vegetation cover and terrain height were replaced by the estimated fractional vegetation cover, which was calculated by the Normalized Difference Vegetation Index(NDVI) of Earth Observing System Moderate-Resolution Imaging Spectroradiometer(EOS-MODIS) and the Digital Elevation Model of the Shuttle Radar Topography Mission(SRTM) system. The near-surface meteorological elements over northeastern China were assimilated into the three-dimensional variational data assimilation system(3DVar) module in the Weather Research and Forecasting(WRF) model. The structure and daily variations of air temperature, humidity, wind and energy fields over northeastern China were simulated using the WRF model. Four groups of numerical experiments were performed, and the simulation results were analyzed of latent heat flux, sensible heat flux, and their relationships with changes in the surface energy flux due to soil moisture and precipitation over different surfaces. The simulations were compared with observations of the stations Tongyu, Naiman, Jinzhou, and Miyun from June to August, 2009. The results showed that the WRF model achieves high-quality simulations of the diurnal characteristics of the surface layer temperature, wind direction, net radiation, sensible heat flux, and latent heat flux over semiarid northeastern China in the summer. The simulated near-surface temperature, relative humidity, and wind speed were improved in the data assimilation case(Case 2) compared with control case(Case 1). The simulated sensible heat fluxes and surface heat fluxes were improved by the land surface parameterization case(Case 3) and the combined case(Case 4). The simulated temporal variations in soil moisture over the northeastern arid areas agree well with observations in Case 4, but the simulated precipitation should be improved in the WRF model. This study could improve the land surface parameters by utilizing remote sensing data and could further improve atmospheric elements with a data assimilation system. This work provides an effective attempt at combining multi-source data with different spatial and temporal scales into numerical simulations. The assimilation datasets generated by this work can be applied to research on climate change and environmental monitoring of arid lands, as well as research on the formation and stability of climate over semiarid areas.  相似文献   
965.
Distributed parameter filtering theory is employed for estimating the state variables and associated error covariances of a dynamical distributed system under highly random tidal and meteorological influences. The stochastic-deterministic mathematical model of the physical system under study consists of the shallow water equations described by the momentum and continuity equations in which the external forces such as Coriolis force, wind friction, and atmospheric pressure are considered. White Gaussian noises in the system and measurement equations are used to account for the inherent stochasticity of the system. By using an optimal distributed parameter filter, the information provided by the stochastic dynamical model and the noisy measurements taken from the actual system are combined to obtain an optimal estimate of the state of the system, which in turn is used as the initial condition for the prediction procedure. The approach followed here has numerical approximation carried out at the end, which means that the numerical discretization is performed in the filtering equations, and not in the equations modelling the system. Therefore, the continuous distributed nature of the original system is maintained as long as possible and the propagation of modelling errors in the problem is minimized. The appropriateness of the distributed parameter filter is demonstrated in an application involving the prediction of storm surges in the North Sea. The results confirm excellent filter performance with considerable improvement with respect to the deterministic prediction.  相似文献   
966.
Distributed parameter filtering theory is employed for estimating the state variables and associated error covariances of a dynamical distributed system under highly random tidal and meteorological influences. The stochastic-deterministic mathematical model of the physical system under study consists of the shallow water equations described by the momentum and continuity equations in which the external forces such as Coriolis force, wind friction, and atmospheric pressure are considered. White Gaussian noises in the system and measurement equations are used to account for the inherent stochasticity of the system. By using an optimal distributed parameter filter, the information provided by the stochastic dynamical model and the noisy measurements taken from the actual system are combined to obtain an optimal estimate of the state of the system, which in turn is used as the initial condition for the prediction procedure. The approach followed here has numerical approximation carried out at the end, which means that the numerical discretization is performed in the filtering equations, and not in the equations modelling the system. Therefore, the continuous distributed nature of the original system is maintained as long as possible and the propagation of modelling errors in the problem is minimized. The appropriateness of the distributed parameter filter is demonstrated in an application involving the prediction of storm surges in the North Sea. The results confirm excellent filter performance with considerable improvement with respect to the deterministic prediction.  相似文献   
967.
Catchment scale hydrological models are critical decision support tools for water resources management and environment remediation. However, the reliability of hydrological models is inevitably affected by limited measurements and imperfect models. Data assimilation techniques combine complementary information from measurements and models to enhance the model reliability and reduce predictive uncertainties. As a sequential data assimilation technique, the ensemble Kalman filter (EnKF) has been extensively studied in the earth sciences for assimilating in-situ measurements and remote sensing data. Although the EnKF has been demonstrated in land surface data assimilations, there are no systematic studies to investigate its performance in distributed modeling with high dimensional states and parameters. In this paper, we present an assessment on the EnKF with state augmentation for combined state-parameter estimation on the basis of a physical-based hydrological model, Soil and Water Assessment Tool (SWAT). Through synthetic simulation experiments, the capability of the EnKF is demonstrated by assimilating the runoff and other measurements, and its sensitivities are analyzed with respect to the error specification, the initial realization and the ensemble size. It is found that the EnKF provides an efficient approach for obtaining a set of acceptable model parameters and satisfactory runoff, soil water content and evapotranspiration estimations. The EnKF performance could be improved after augmenting with other complementary data, such as soil water content and evapotranspiration from remote sensing retrieval. Sensitivity studies demonstrate the importance of consistent error specification and the potential with small ensemble size in the data assimilation system.  相似文献   
968.
CMA-CUACE-Haze化学天气模式是中国研发的气溶胶过程模拟和评估工具,但目前还没有配套的大气化学天气耦合同化分析系统。文中在CMA-MESO三维变分分析的基础上建立了区域化学天气耦合同化系统,该系统把变量之间不相关的PM2.5 和PM2.5-10作为控制变量,采用模型化的背景误差协方差,初步实现气溶胶观测PM2.5和PM10的同化分析。通过单站气溶胶观测的理想同化试验验证耦合同化系统设计的合理性,并针对2016年12月的重污染天气过程进行GTS传输的常规观测与气溶胶PM2.5和PM10观测资料同化与预报试验。试验结果表明,大气化学天气耦合同化系统可对气溶胶观测和天气变量观测同时进行极小化分析,大气化学变量和天气变量分析场互不影响;气溶胶观测资料的同化合理修正了大气化学背景场,PM2.5和PM10变量分析场更接近观测;气溶胶观测资料同化对污染物预报的影响可持续72 h。搭建的区域化学天气耦合同化系统能为CMA-CUACE-Haze化学天气模式提供更准确的化学初始场。  相似文献   
969.
基于集合平方根滤波方法(En SRF)同化方法和NOAH陆面模式的WRF-En SRF陆面同化系统,同化了江苏省70个自动站资料进行试验,研究加入不同的同化资料(地表温度、10 cm土壤温度、20 cm土壤温度)及初始扰动强度的大小对陆面数据同化系统性能的影响,以及对不同区域(降水大值区和降水小值区)的分析场进行效果对比,并且检验了同化系统在一次典型的梅雨锋暴雨的同化效果,证明了这个系统的有效性和可行性。对于资料选取试验,比较全场平均的同化时刻分析场模拟观测相对真实观测的均方根误差可以得到:同化地表温度资料并且初始扰动强度1 K的时候同化效果最理想。对于选定的降水大值区和降水小值区来讲,降水大值区的土壤温度和土壤湿度分析场更加接近于真实场。运用于一次梅雨锋暴雨的同化实验,对于最后一个同化时次的分析场作为背景场做集合预报,最终证明预报结果是有效的。土壤温度、土壤湿度、地表温度和近地面风场的预报结果都较用NCEP再分析资料直接做预报作为控制试验的结果有不同程度的改进。这说明该系统应用于实际同化中的性能较为良好,可以应用于实际土壤湿度与温度的预报。  相似文献   
970.
利用WRF (Weather Research Forecast)模式及其自带的Nudging同化系统,结合通过质量控制的三峡地区2 588个自动站的2014年1月观测资料,进行同化自动站观测试验,建立了三峡地区3 km高分辨率气温场,并与加入NCEP稀疏观测站点的稀疏场试验和未同化试验在月平均温度场和逐时温度变化两个方面进行了综合对比分析。结果表明:与未同化试验相比,同化自动站观测后,大部分地区平均气温场偏差减小至±0.5℃以内;平原、丘陵、山区气温逐时绝对偏差均减小至1℃以内,逐时气温的相关系数超过0.9,偏差范围减小1.14℃以上,均方根误差减幅达0.55℃以上;同化自动站观测后,泰勒图中平原和丘陵的相对标准差接近于1,山区减小至1.11。同化自动站观测试验的结果优于同化稀疏场试验,较好地建立了三峡地区2014年1月气温场,为该地区建立高分辨率温度场提供了有效参考。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号