首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   2篇
  国内免费   11篇
地球物理   7篇
地质学   6篇
海洋学   17篇
综合类   6篇
  2024年   1篇
  2023年   4篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2015年   3篇
  2014年   3篇
  2011年   2篇
  2009年   1篇
  2007年   2篇
  2004年   2篇
  2002年   2篇
  2000年   1篇
  1996年   1篇
  1992年   2篇
排序方式: 共有36条查询结果,搜索用时 22 毫秒
31.
作为一类新污染物,沉积物中的抗生素对生态系统构成了潜在的威胁。探究常见抗生素在黄河三角洲[Huanghe (Yellow) River Delta, HRD]表层沉积物中的赋存状况及其生态风险具有现实意义。利用高效液相色谱-串联质谱法测定了2021年6月采自HRD南北两个区域表层沉积物中的磺胺类(SAs)、喹诺酮类(QNs)、大环内酯类(MLs)和四环素类(TCs)共14种抗生素的含量。结果表明,抗生素的总检出率为52.8%,浓度范围为nd (未检出)~22.6 ng/g, QNs和MLs检出率较高; QNs和TCs的浓度水平较高。HRD表层沉积物抗生素浓度分布特征的主要影响因素是人口密度以及农业和畜牧业发展,次要因素是沉积物的理化性质。南部区域抗生素浓度水平显著高于北部区域,沉积物中有机质和黏土含量与QNs和TCs显著正相关。生态风险评价结果表明,南部区域的生态风险水平明显高于北部区域,其中QNs和TCs为主要贡献者,但抗生素生态风险水平并不只由浓度决定,还取决于其对水生生物的毒性大小和沉积物的理化性质。  相似文献   
32.
水环境中抗生素污染日益严重。本研究制备了掺杂氮、硫的新型石墨烯材料(GO-NS),研究了其对磺胺类抗生素(Sulfonamides,SAs)的吸附和去除能力,并阐明吸附机制。研究发现,GO-NS对SAs的最大吸附量达100.26 mg·g^-1,吸附能力优于多层石墨烯(Multilayer graphene,MG)和还原氧化石墨烯(Reduced graphene oxide,rGO)这两种传统石墨烯材料。疏水作用和氢键作用是GO-NS吸附SAs的主要机理。相比于MG和rGO,GO-NS适用的pH范围最广,在pH=2~10范围内均具有较强的吸附效果,并且离子强度和腐殖酸(Humicacid,HA)的加入提升了GO-NS的吸附性能。此外,GO-NS仅通过短时间超声可实现有效的剥离分散,使吸附量增加。故该新型石墨烯材料GO-NS具有优越地吸附SAs的能力和广泛的环境适应性,可作为治理水环境中SAs污染的一种有效吸附剂。  相似文献   
33.
34.
For several decades, prokaryotic and eukaryotic inhibitors have been used to exclude bacteria from microalgal cultures and for investigating prey-predator relationships. Recently there has been considerable interest in using specific inhibitors for studying the interactions between bacteria and phytoplankton, by selective repression of either organism’s activity. The effectiveness of chemical inhibitors must be tested before applying them to natural communities to partition metabolic activities between functional groups. Six different antibiotics selected from the most commonly reported in the literature were tested, at concentrations varying from 12.5 to 100 mg L−1, for their effect on bacterial growth and functional diversity of natural communities from Mediterranean coastal waters. Penicillin and streptomycin each at a final concentration of 100 mg L−1 significantly reduced bacterial growth within 2 h. There was a greater impact on bacterial functional diversity when both antibiotics were mixed together. This mixture did not have any significant effect on the growth of selected cultured phytoplankton strains, whereas the eukaryote inhibitor cycloheximide at 100 mg L−1 reduced growth within 2 h of incubation. The penicillin–streptomycin mixture and cycloheximide alone successfully partitioned NH4+ and NO3 uptake between bacteria and phytoplankton bi-weekly sampled in a coastal lagoon in Autumn, where bacterial contribution to total NH4+ and NO3 uptake averaged 46 and 41%, respectively. The use of specific inhibitors may be a valuable method for studying interactions, such as competition and mutualism, or lack of interaction between the different components of microbial communities and could be used to study their relative importance in biogeochemical fluxes.  相似文献   
35.
地下水中抗生素污染检测分析研究进展   总被引:5,自引:0,他引:5  
祁彦洁  刘菲 《岩矿测试》2014,33(1):1-11
抗生素是一类环境中新型有机污染物,其在地下水系统中的污染状况和环境行为备受关注。本文从污染来源、危害、污染现状、检测技术和迁移转化等方面综述了近年来地下水中抗生素的研究现状。抗生素主要来源于抗生素生产工业、医疗卫生业、畜牧养殖业、水产养殖业等,进入地下水中的微量抗生素不但诱导抗药性细菌的产生,更对原位微生物及人体产生危害。检测技术的进步是抗生素污染研究的重要支撑,目前已有多种抗生素污染的检测技术,其中酶联免疫技术主要用于抗生素污染初步筛查;气相色谱-质谱技术由于需要衍生化等处理过程而较少使用;毛细管电泳技术具有消耗样品量少、分析成本低等优点,但重现性差使其应用受到限制;液相色谱技术是在抗生素检测中应用较普遍的技术,特别是液相色谱-串联质谱技术具有灵敏度高、检出限低、可检测多组分污染物等优点,应用最为广泛。近年来依托于各种检测技术在国内外均有地下水中抗生素检出的报道,其检出浓度范围1~104ng/L不等,检出种类有磺胺类、喹诺酮类、四环素类及大环内酯类抗生素。抗生素在地下水系统中的迁移转化行为包括吸附、水解、光解、生物降解等过程,其基质复杂、含量低和产物难以定性等问题给检测提出了新的挑战。优化检测方法、开发新的预处理技术、开展全面的地下水污染调查、进行代谢产物定性分析、探索抗生素治理技术等,将是今后地下水中抗生素污染研究的主要方向。  相似文献   
36.
氟喹诺酮类(FQs)药物是一种广泛使用的人工合成类抗生素,存在于水体、沉积物等各种环境介质中,并在水生生物体内得到富集,对人类健康和全球生态系统的可持续发展有重要的影响。环境中FQs残留的分析检测是了解其环境生物地球化学行为和潜在生态环境风险的基础,本文系统总结了近几年海洋水体、沉积物和生物体样品中FQs的残留特征、样品前处理与检测技术,在此基础上,前瞻分析了海洋环境中FQs残留分析检测技术的发展趋势。分析表明,FQs的分离富集和测定必须充分考虑FQs的物理化学性质和样品成分的复杂性。海水样品准备应注意过滤膜的选择和pH的调节;沉积物和生物体的样品准备应考虑水分、萃取溶剂、基质效应和pH的影响,并使用超声萃取。固相萃取、QuEChERS萃取、磁性固相萃取是分离富集FQs较常用的方法,吸附剂、淋洗溶液和洗脱溶液的选择和优化是提高样品回收率的关键。FQs的检测大多通过液质联用或液相色谱结合荧光检测器进行,其中色谱柱的选择、离子对试剂的添加和进样pH值的调整都是优化的关键因素。研究指出海洋领域FQs在线自动SPE技术的开发以及新型萃取吸附剂的研制应在未来研究中被重点关注。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号