开展地理国情普查,是党中央、国务院对测绘地理信息工作服务国家宏观管理、规划决策提出的新的更高的要求,也是新时期测绘与地理信息部门服务经济社会科学发展新的实践和重大任务,做好这项工作具有重大的现实意义和历史意义。 ISO 9000质量管理体系吸收国际上先进的质量管理理念,对于产品和服务的供需双方具有很强的实践性和指导性,因此将ISO 9000质量管理体系应用于地理国情普查工作中,可以使生产单位更高效、快速、准确地完成工作,提供普查成果。 相似文献
AbstractThis article presents a comparison between real-time discharges calculated by a flash-flood warning system and post-event flood peak estimates. The studied event occurred on 15 and 16 June 2010 at the Argens catchment located in the south of France. Real-time flood warnings were provided by the AIGA (Adaptation d’Information Géographique pour l’Alerte en Crue) warning system, which is based on a simple distributed hydrological model run at a 1-km2 resolution using radar rainfall information. The timing of the warnings (updated every 15 min) was compared to the observed flood impacts. Furthermore, “consolidated” flood peaks estimated by an intensive post-event survey were used to evaluate the AIGA-estimated peak discharges. The results indicated that the AIGA warnings clearly identified the most affected areas. However, the effective lead-time of the event detection was short, especially for fast-response catchments, because the current method does not take into account any rainfall forecast. The flood peak analysis showed a relatively good correspondence between AIGA- and field-estimated peak values, although some differences were due to the rainfall underestimation by the radar and rainfall–runoff model limitations.
Editor Z.W. Kundzewicz; Guest editor R.J. MooreCitation Javelle, P., Demargne, J., Defrance, D., Pansu, J. and Arnaud, P., 2014. Evaluating flash-flood warnings at ungauged locations using post-event surveys: a case study with the AIGA warning system. Hydrological Sciences Journal, 59 (7), 1390–1402. http://dx.doi.org/10.1080/02626667.2014.923970相似文献
The Slave craton in northwestern Canada, a relatively small Archean craton (600×400 km), is ideal as a natural laboratory for investigating the formation and evolution of Mesoarchean and Neoarchean sub-continental lithospheric mantle (SCLM). Excellent outcrop and the discovery of economic diamondiferous kimberlite pipes in the centre of the craton during the early 1990s have led to an unparalleled amount of geoscientific information becoming available.
Over the last 5 years deep-probing electromagnetic surveys were conducted on the Slave, using the natural-source magnetotelluric (MT) technique, as part of a variety of programs to study the craton and determine its regional-scale electrical structure. Two of the four types of surveys involved novel MT data acquisition; one through frozen lakes along ice roads during winter, and the second using ocean-bottom MT instrumentation deployed from float planes.
The primary initial objective of the MT surveys was to determine the geometry of the topography of the lithosphere–asthenosphere boundary (LAB) across the Slave craton. However, the MT responses revealed, completely serendipitously, a remarkable anomaly in electrical conductivity in the SCLM of the central Slave craton. This Central Slave Mantle Conductor (CSMC) anomaly is modelled as a localized region of low resistivity (10–15 Ω m) beginning at depths of 80–120 km and striking NE–SW. Where precisely located, it is spatially coincident with the Eocene-aged kimberlite field in the central part of the craton (the so-called “Corridor of Hope”), and also with a geochemically defined ultra-depleted harzburgitic layer interpreted as oceanic or arc-related lithosphere emplaced during early tectonism. The CSMC lies wholly within the NE–SW striking central zone defined by Grütter et al. [Grütter, H.S., Apter, D.B., Kong, J., 1999. Crust–mantle coupling; evidence from mantle-derived xenocrystic garnets. Contributed paper at: The 7th International Kimberlite Conference Proceeding, J.B. Dawson Volume, 1, 307–313] on the basis of garnet geochemistry (G10 vs. G9) populations.
Deep-probing MT data from the lake bottom instruments infer that the conductor has a total depth-integrated conductivity (conductance) of the order of 2000 Siemens, which, given an internal resistivity of 10–15 Ω m, implies a thickness of 20–30 km. Below the CSMC the electrical resistivity of the lithosphere increases by a factor of 3–5 to values of around 50 Ω m. This change occurs at depths consistent with the graphite–diamond transition, which is taken as consistent with a carbon interpretation for the CSMC.
Preliminary three-dimensional MT modelling supports the NE–SW striking geometry for the conductor, and also suggests a NW dip. This geometry is taken as implying that the tectonic processes that emplaced this geophysical–geochemical body are likely related to the subduction of a craton of unknown provenance from the SE (present-day coordinates) during 2630–2620 Ma. It suggests that the lithospheric stacking model of Helmstaedt and Schulze [Helmstaedt, H.H., Schulze, D.J., 1989. Southern African kimberlites and their mantle sample: implications for Archean tectonics and lithosphere evolution. In Ross, J. (Ed.), Kimberlites and Related Rocks, Vol. 1: Their Composition, Occurrence, Origin, and Emplacement. Geological Society of Australia Special Publication, vol. 14, 358–368] is likely correct for the formation of the Slave's current SCLM. 相似文献