首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4063篇
  免费   1051篇
  国内免费   2096篇
测绘学   257篇
大气科学   3422篇
地球物理   740篇
地质学   993篇
海洋学   834篇
天文学   203篇
综合类   348篇
自然地理   413篇
  2024年   38篇
  2023年   68篇
  2022年   122篇
  2021年   196篇
  2020年   193篇
  2019年   221篇
  2018年   180篇
  2017年   206篇
  2016年   197篇
  2015年   260篇
  2014年   288篇
  2013年   336篇
  2012年   328篇
  2011年   314篇
  2010年   262篇
  2009年   343篇
  2008年   324篇
  2007年   350篇
  2006年   327篇
  2005年   336篇
  2004年   280篇
  2003年   241篇
  2002年   213篇
  2001年   204篇
  2000年   218篇
  1999年   167篇
  1998年   185篇
  1997年   140篇
  1996年   123篇
  1995年   108篇
  1994年   111篇
  1993年   65篇
  1992年   61篇
  1991年   61篇
  1990年   20篇
  1989年   18篇
  1988年   19篇
  1987年   12篇
  1986年   9篇
  1985年   15篇
  1984年   14篇
  1983年   8篇
  1982年   4篇
  1981年   12篇
  1980年   5篇
  1978年   1篇
  1977年   6篇
  1954年   1篇
排序方式: 共有7210条查询结果,搜索用时 406 毫秒
991.
This study is focused on climate-induced variation of sea level in Stockholm during 1873-1995. After the effect of the land uplift, is removed, the residual is characterized and related to large-scale temperature and atmospheric circulation. The residual shows an overall upward trend, although this result depends on the uplift rate used. However, the seasonal distribution of the trend is uneven. There are even two months (June and August) that show a negative trend. The significant trend in August may be linked to fresh water input that is controlled by precipitation. The influence of the atmospheric conditions on the sea level is mainly manifested through zonal winds, vorticity and temperature. While the wind is important in the period January-May, the vorticity plays a main role during June and December. A successful linear multiple-regression model linking the climatic variables (zonal winds, vorticity and mean air temperature during the previous two months) and the sea level is established for each month. An independent verification of the model shows that it has considerable skill in simulating the variability.  相似文献   
992.
白垩纪中期异常地质事件与全球变化   总被引:12,自引:1,他引:11  
胡修棉 《地学前缘》2005,12(2):222-230
白垩纪中期(125~90 Ma)是地质历史中一个极端温室时期,集中出现一系列异常事件。异常事件是地球系统内各圈层相互耦合的产物,事件相互之间不是孤立的,单个事件引起的全球变化对其他事件起着明显的正/负反馈机制作用。文中基于对白垩纪中期异常事件的深入解剖和分析,包括大规模海底火山事件、大洋缺氧事件、生物异常更替与绝灭、白垩纪超静磁带、大洋红层出现等,在探讨白垩纪中期各个事件特征基础上,重点阐述异常事件所引起的全球变化及其对海洋、气候的影响;提出异常事件之间的相互关联与反馈机制。研究发现,大规模海底火山作用是引起白垩纪中期异常海洋和气候的最根本原因,直接促进大洋缺氧事件、生物绝灭与更替、沉积记录的转变等事件的发生。  相似文献   
993.
关中地区重力场动态演化特征与地震活动分析   总被引:9,自引:4,他引:5  
系统分析了陕西关中测区1983~2003年的流动重力观测资料,研究了重力场的时空动态演化特征,结 果表明:①地震孕育阶段,伴随异常点段增多,重力场在一定范围内出现区域性的重力负异常,地震往往发生在异 常区的边缘或重力异常梯度带上,震后逐渐回升;②重力场变化图像较好地反映了在区域应力场和震源应力场作 用下断层活动引起的重力效应;③关中重力场的转折变化受制于大区域应力场的影响和作用。  相似文献   
994.
利用政府间气候变化专门委员会第四次评估报告(IPCCAR4)的15个耦合气候模式在不同排放情景下的模拟结果,对我国夏季降水及相关大气环流场的未来时空变化特征与模式之间的不确定性作了研究。结果表明,在全球变暖背景下,我国夏季降水表现出较强的局地特征。其中,我国东部和高原地区的降水在21世纪表现出明显的增加趋势,而且这种趋势随着变暖的加剧而增强,同时模式模拟结果之间的一致性也更好,表明这一结果的可信度较高。在全球变暖背景下,我国新疆南部地区表现为持续的降水减少趋势,而我国西南地区夏季降水的变化则呈现出先减少(21世纪初)后增加的特征,不同模式对降水这些局地特征的模拟也都表现出较好的一致性。其他地区夏季降水在21世纪的变化不大,同时模式模拟的一致性也较差。多模式模拟的我国未来百年夏季降水的这些变化特征在温室气体高、中、低不同排放情景下基本一致,A2情景预估结果变化最大,A1B次之,B1相对最小。东亚夏季大气环流场的预估结果显示,在全球变暖的背景下,大部分模式的模拟结果都表明,东亚夏季风环流有所增强,从而使得由低纬度大洋和南海地区向我国大陆的水汽输送增加,造成该地区大气含水量的增多,从而为我国东部地区夏季降水的增加提供有利条件。此外,随着全球变暖的加剧,西太平洋副热带高压持续增强,其变化对我国东部地区夏季降水的影响程度和范围也明显增大。这些环流场及其不确定性的分析结果进一步加强了我国夏季降水未来变化预估结果的可信度。  相似文献   
995.
2009/2010年冬季云南严重干旱的原因分析   总被引:14,自引:3,他引:11  
2009/2010年冬季我国云南省出现严重干旱,这次大范围严重干旱是较长时期降水稀少所造成的。首先讨论云南省冬季降水偏多和偏少时大气环流和海温的统计特征,基于它们的统计关系,再对2009/2010年冬季我国云南省的严重干旱进行个例对比分析。研究表明西风带环流系统异常是造成这次干旱灾害的主要成因。贝加尔湖为高度负距平,东亚沿海为高度正距平,从贝加尔湖以西到东亚中高纬度西风带较平直,冬季冷空气偏弱,很难影响西南地区。尤其是副热带中东急流减弱,从欧洲东部到里海为高压脊控制,西风带的扰动系统不易东移到东亚上空;青藏高原上空为稳定的高压脊,孟加拉湾南支槽减弱,云南省受异常西北气流控制。对太平洋和印度洋海温的分析表明,虽然海温异常可以影响冬季的云南降水,但海温异常并不是2009/2010年冬季云南省降水偏少的最重要原因。  相似文献   
996.
不同年代际背景下南半球环流变化对中国夏季降水的影响   总被引:3,自引:0,他引:3  
利用1951~2008年NCEP再分析资料和中国夏季降水观测资料,分析了南半球环流的年代际变化特征以及在不同年代际背景下南极涛动(AAO)对中国东部夏季降水的影响.结果表明,20世纪70年代末,南半球环流发生了年代际变化,东南太平洋和南大西洋副高减弱,而马斯克林高压(南印度洋副高)增强,绕南极低压带加深.在此背景下,AAO由负位相转变为正位相,对中国夏季降水的影响也随之发生改变.在春季AAO偏强的情况下,1976年之前,长江以南地区和华北地区降水偏多,江淮流域降水偏少;而在1976年之后,从华南沿海一直到江淮流域降水都偏多,华北到东北地区降水偏少.这说明AAO对中国夏季降水的影响与年代际背景有关,1976年之后,AAO对中国夏季降水的影响增强,影响范围更加偏北.在当前海温预报因子作用减弱的情况下,AAO有可能成为中国夏季降水预测的一个重要预报因子.  相似文献   
997.
袁薇  邹立尧  孙建奇 《冰川冻土》2009,31(5):801-807
利用1961—2005年新疆地区最为齐全的整编台站观测资料集,分析了新疆地区夏季气温的时空变化特征,并探讨了引起这种时空变化的大气环流因子.结果表明:新疆地区的夏季气温首先表现出整体一致性的变化,在过去的45a中全疆气温持续上升,这与全球变暖的大背景相一致.影响新疆全疆夏季气温变化的主要大气环流因子为贝加尔湖附近高压脊的异常,当其偏强时,新疆地区夏季气温偏高,反之则偏低.新疆地区夏季气温第二类变化模态为南、北两疆反向的特征,这种变化模态主要表现在气温的年际时间尺度上.新疆南、北两疆气温反相变化主要是由伊朗高压和乌拉尔地区高压脊的变化所控制.当这两个大气环流系统在新疆地区造成中高层位势高度南北向正负异常时,新疆地区以天山为界夏季气温表现出反向的变化特征.  相似文献   
998.
谭明 《第四纪研究》2009,29(5):851-862
根据最近的研究结果,中国季风区同一洞穴或同一区域的晚全新世石笋氧同位素序列具有较好的重复性,表明中国季风区的石笋氧同位素短尺度(10~100年尺度,后同)变率所具有的信号强于噪音。通过进一步比较分析发现,一些石笋氧同位素记录虽然来自距离上千公里之遥的不同区域,但它们的波动形式在年代际至世纪尺度极其相似,说明它们是一致的大区域信号,但多数石笋氧同位素序列未能校准到本区器测的降水或温度记录上。通过与中国气候学家建立的各类季风指数比较,发现这些具有一致大区信号的中国石笋氧同位素序列与海平面气压差指数或海陆温差指数关系最好。再通过与印度洋-太平洋海域海平面气压差、以及许多海、气环流观测记录对比,发现中国季风区石笋氧同位素序列记录了20世纪后期最强的一次全球海、气环流年代际均值突变,由此初步确认了中国季风区石笋氧同位素短尺度变化的环流意义: 当印度洋海水和中东太平洋海水温度偏低时,西太平洋副热带高压偏北东缩而弱,中国季风区内来自印度洋的水汽份额增大,由于这些水汽的输送路程很远,导致中国季风区的雨水氧同位素及石笋氧同位素较轻; 而当印度洋海水和中东太平洋海水温度偏高时,西太平洋副热带高压偏南西伸而强,中国季风区内来自印度洋的远源水汽份额减少,而来自西太平洋的水汽份额增大,由于后者输送路程较近,导致中国季风区的雨水氧同位素及石笋氧同位素较重。由此命名瑞利分馏原理所决定、反映印度洋/太平洋海、气环流转变且大区域一致的中国季风区石笋氧同位素10~100年尺度变化为“环流效应”。  相似文献   
999.
中国东部夏季极端降水事件及大气环流异常分析   总被引:1,自引:0,他引:1  
主要利用1961~2014年中国东部地区438个台站的逐日降水资料和NCEP/NCAR的再分析资料,从大气内部动力角度对夏季不同极端降水情况下的环境场进行分析,结果表明:对长江中下游地区而言,在极端降水频次偏多年时,850 hPa风场及整层水汽输送距平场均表明东亚夏季风偏弱,有利于更多的水汽输送到长江中下游地区,500 hPa鄂霍次克海阻塞高压持续日数偏多,有利于冷空气南下,200 hPa东亚副热带急流偏南,且30°N以南偏西风异常有利于辐散,而在斜压波包从西北东南向传播为极端降水事件分发生集聚了能量;对华北地区极端降水频次偏多年而言,850 hPa风场及整层的水汽输送距平场均表明东亚夏季风偏强,有利于更多的水汽输送到华北地区,500 hPa高度距平场日本海正距平,贝加尔湖蒙古地区为负距平,华北地区东高西低,200 hPa东亚副热带急流偏北,从而导致我国华北地区极端降水频次偏多,能量传播也为西北东南向。这些结果表明极端降水的变化,与大气内部的动力作用和能量的传播有密切的关系。  相似文献   
1000.
城市大气污染扩散GIS模拟分析--以福州市为例   总被引:4,自引:0,他引:4  
以福州市为例,分析了GIS在环境模型研究中的主要应用范围;剖析了GIS与环境模型结合的三种层次。在 GIS技术支持下建立了城市点源和线源大气污染扩散模型,采用大气污染扩散模型与GIS的嵌入式的紧密集成技术,进行福州市大气污染扩散模拟,直接采用等值线的方式表达大气污染物在不同气象条件下空间分布模拟结果, 为城市大气污染源的管理和时空模拟提供了一个良好的可视化分析环境。模拟结果表明:2000年福州市区工业路附近区域与福新路附近区域出现SO2高浓度;湖东路、八一七路、福新路、六一北路围成区域出现NOx高浓度,为机动车污染严重的区域。污染物浓度分布与污染源的空间分布和排放量密切相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号