首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5154篇
  免费   775篇
  国内免费   820篇
测绘学   31篇
大气科学   222篇
地球物理   254篇
地质学   3230篇
海洋学   245篇
天文学   2307篇
综合类   198篇
自然地理   262篇
  2024年   23篇
  2023年   59篇
  2022年   120篇
  2021年   139篇
  2020年   129篇
  2019年   146篇
  2018年   117篇
  2017年   140篇
  2016年   142篇
  2015年   175篇
  2014年   208篇
  2013年   204篇
  2012年   239篇
  2011年   243篇
  2010年   209篇
  2009年   423篇
  2008年   341篇
  2007年   437篇
  2006年   408篇
  2005年   395篇
  2004年   360篇
  2003年   353篇
  2002年   295篇
  2001年   250篇
  2000年   226篇
  1999年   199篇
  1998年   201篇
  1997年   100篇
  1996年   59篇
  1995年   81篇
  1994年   60篇
  1993年   52篇
  1992年   63篇
  1991年   27篇
  1990年   29篇
  1989年   43篇
  1988年   20篇
  1987年   12篇
  1986年   10篇
  1985年   3篇
  1984年   5篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1954年   1篇
排序方式: 共有6749条查询结果,搜索用时 10 毫秒
141.
Observations of turbulent velocity dispersions in the H  i component of galactic discs show a characteristic floor in galaxies with low star formation rates and within individual galaxies the dispersion profiles decline with radius. We carry out several high-resolution adaptive mesh simulations of gaseous discs embedded within dark matter haloes to explore the roles of cooling, star formation, feedback, shearing motions and baryon fraction in driving turbulent motions. In all simulations the disc slowly cools until gravitational and thermal instabilities give rise to a multiphase medium in which a large population of dense self-gravitating cold clouds are embedded within a warm gaseous phase that forms through shock heating. The diffuse gas is highly turbulent and is an outcome of large-scale driving of global non-axisymmetric modes as well as cloud–cloud tidal interactions and merging. At low star formation rates these processes alone can explain the observed H  i velocity dispersion profiles and the characteristic value of  ∼10 km s−1  observed within a wide range of disc galaxies. Supernovae feedback creates a significant hot gaseous phase and is an important driver of turbulence in galaxies with a star formation rate per unit area  ≳10−3 M yr−1 kpc−2  .  相似文献   
142.
The thermal regime of the baryons behind shock waves arising in the process of virialization of dark matter halos is governed at certain conditions by radiation of HD lines. A small fraction of the shocked gas can cool down to the temperature of the cosmic microwave background (CMB). We estimate an upper limit for this fraction: at z = 10 it increases sharply from about qT ∼ 10–3 for dark halos of M = 5 × 107 M to ∼ 0.1 for halos with M = 108 M. Further increase of the halo mass does not lead however to a significant growth of qT – the asymptotic value for M ≫ 108 M is 0.3. We estimate the star formation rate associated with such shock waves, and show that they can provide a small but not negligible fraction of the star formation. We argue that extremely metal‐poor low‐mass stars in the Milky Way may have been formed from primordial gas behind such shocks. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
143.
144.
145.
The evolution of star-forming core analogues undergoing inside-out collapse is studied with a multipoint chemodynamical model which self-consistently computes the abundance distribution of chemical species in the core. For several collapse periods the output chemistry of infalling tracer species such as HCO+, CS and N2H+ is then coupled to an accelerated Λ-iteration radiative transfer code, which predicts the emerging molecular line profiles using two different input gas/dust temperature distributions. We investigate the sensitivity of the predicted spectral line profiles and line asymmetry ratios to the core temperature distribution, the time-dependent model chemistry, as well as to ad hoc abundance distributions. The line asymmetry is found to be strongly dependent on the adopted chemical abundance distribution. In general, models with a warm central region show higher values of blue asymmetry in optically thick HCO+ and CS lines than models with a starless core temperature profile. We find that in the formal context of Shu-type inside-out infall, and in the absence of rotation or outflows, the relative blue asymmetry of certain HCO+ and CS transitions is a function of time and, subject to the foregoing caveats, can act as a collapse chronometer. The sensitivity of simulated HCO+ line profiles to linear radial variations, subsonic or supersonic, of the internal turbulence field is investigated in the separate case of static cores.  相似文献   
146.
We developed kinetic theory for the charging processes of small dust grains near the lunar surface due to interaction with the anisotropic solar wind plasma. Once charged, these dust grains, which are exposed to the electric field in the sheath region near the lunar surface, could loft and distribute around such heights off the surface where they reach equilibrium with the local gravitational force. Analytical solutions were derived for the charging time, grain floating potential, and grain charge, characterizing the charging processes of small dust grains in a two-component and in a multi-component solar wind plasma, and further highlighting the unique features presented by the high streaming plasma velocity. We have also formulated a novel kinetic theory of sheath formation around an absorbing planar surface immersed in the anisotropic solar wind plasma in the case of a negligible photoelectric effect and presented solutions for the sheath structure. In this study we combined the results from these analyses and provided estimates for the size distribution function of dust that is expected to be lofted in regions dominated by the solar wind plasma, such as near the terminator and in nearby shadowed craters. Corresponding to the two dominant streaming velocity peaks of 300 and 800 km/s, mean dust diameters of 500 and 350 nm, respectively, are expected to be found at equilibrium at heights of relevance to exploration operations, e.g., around 1.5 m height off the lunar surface. In shadowed craters near the terminator region, where isotropic plasma should be dominating, we estimate mean lofted dust diameter of 800 nm around the same 1.5 m height off the lunar surface. The generally applicable solutions could be used to readily calculate the expected lofted size distribution near the lunar surface as a function of plasma parameters, dust grain composition, and other parameters of interest.  相似文献   
147.
M. Min  C.P. Dullemond  C. Dominik 《Icarus》2011,212(1):416-426
The precise location of the water ice condensation front (‘snow line’) in the protosolar nebula has been a debate for a long time. Its importance stems from the expected substantial jump in the abundance of solids beyond the snow line, which is conducive to planet formation, and from the higher ‘stickiness’ in collisions of ice-coated dust grains, which may help the process of coagulation of dust and the formation of planetesimals. In an optically thin nebula, the location of the snow line is easily calculated to be around 3 AU, subject to brightness variations of the young Sun. However, in its first 5-10 myr, the solar nebula was optically thick, implying a smaller snowline radius due to shielding from direct sunlight, but also a larger radius because of viscous heating. Several models have attempted to treat these opposing effects. However, until recently treatments beyond an approximate 1 + 1D radiative transfer were unfeasible. We revisit the problem with a fully self-consistent 3D treatment in an axisymmetric disk model, including a density-dependent treatment of the dust and ice sublimation. We find that the location of the snow line is very sensitive to the opacities of the dust grains and the mass accretion rate of the disk. We show that previous approximate treatments are quite efficient at determining the location of the snow line if the energy budget is locally dominated by viscous accretion. Using this result we derive an analytic estimate of the location of the snow line that compares very well with results from this and previous studies. Using solar abundances of the elements we compute the abundance of dust and ice and find that the expected jump in solid surface density at the snow line is smaller than previously assumed. We further show that in the inner few AU the refractory species are also partly evaporated, leading to a significantly smaller solid state surface density in the regions where the rocky planets were formed.  相似文献   
148.
报告分子外流源L1211 中新发现的12 个近红外HH 天体.在L1211 的~4’区域,取得了JHK’宽带和H2  v = 10  S(1) 发射线窄带的近红外图像.分析表明,新探测到的许多红外源与浓密分子云物理成协,其中有20 多个源表现出典型的T Tauri 星、Herbig Ae/Be星和原恒星的红外超.L1211 中的IRAS点源没有被观测到,可能是更深地埋于分子云中.对红外观测和分子线观测消光估计的比较显示,小于2μm 的近红外观测还不足以揭示深埋于分子云的整个年轻星团.根据近红外HH 天体的形态分布和红外源性质,能进一步证认这些HH 天体的激发源.其结果表明,L1211 分子云中具有多个红外源驱动的多个外流活动  相似文献   
149.
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号