全文获取类型
收费全文 | 2267篇 |
免费 | 302篇 |
国内免费 | 276篇 |
专业分类
测绘学 | 132篇 |
大气科学 | 279篇 |
地球物理 | 847篇 |
地质学 | 1021篇 |
海洋学 | 66篇 |
天文学 | 25篇 |
综合类 | 110篇 |
自然地理 | 365篇 |
出版年
2024年 | 6篇 |
2023年 | 23篇 |
2022年 | 32篇 |
2021年 | 30篇 |
2020年 | 65篇 |
2019年 | 64篇 |
2018年 | 36篇 |
2017年 | 78篇 |
2016年 | 136篇 |
2015年 | 126篇 |
2014年 | 144篇 |
2013年 | 116篇 |
2012年 | 101篇 |
2011年 | 146篇 |
2010年 | 88篇 |
2009年 | 182篇 |
2008年 | 196篇 |
2007年 | 144篇 |
2006年 | 133篇 |
2005年 | 123篇 |
2004年 | 96篇 |
2003年 | 80篇 |
2002年 | 76篇 |
2001年 | 90篇 |
2000年 | 58篇 |
1999年 | 63篇 |
1998年 | 67篇 |
1997年 | 44篇 |
1996年 | 39篇 |
1995年 | 39篇 |
1994年 | 44篇 |
1993年 | 29篇 |
1992年 | 22篇 |
1991年 | 20篇 |
1990年 | 11篇 |
1989年 | 16篇 |
1988年 | 11篇 |
1987年 | 10篇 |
1986年 | 10篇 |
1985年 | 9篇 |
1984年 | 14篇 |
1983年 | 6篇 |
1981年 | 2篇 |
1980年 | 3篇 |
1979年 | 5篇 |
1978年 | 3篇 |
1977年 | 4篇 |
1976年 | 2篇 |
1975年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有2845条查询结果,搜索用时 13 毫秒
1.
Wang Yanhui 《水文研究》1992,6(2):241-251
Black locust (Robina pseudoacacia) has become one of the most important shelter species in the loess area of northwest China. This paper summarizes recent research concerning its hydrological influence, including canopy interception, litter absorption capacity, its effect on rainfall kinetic energy, infiltration rates, surface runoff, soil moisture, and evapotranspiration, and its role in soil conservation. Several predictive models are listed. on the basis of existing results, optimum characteristics for an effective plantation are defined, and problems requiring further research are identified. 相似文献
2.
Spectroscopic techniques have become attractive to assess soil properties because they are fast, require little labor and may reduce the amount of laboratory waste produced when compared to conventional methods. Imaging spectroscopy (IS) can have further advantages compared to laboratory or field proximal spectroscopic approaches such as providing spatially continuous information with a high density. However, the accuracy of IS derived predictions decreases when the spectral mixture of soil with other targets occurs. This paper evaluates the use of spectral data obtained by an airborne hyperspectral sensor (ProSpecTIR-VS – Aisa dual sensor) for prediction of physical and chemical properties of Brazilian highly weathered soils (i.e., Oxisols). A methodology to assess the soil spectral mixture is adapted and a progressive spectral dataset selection procedure, based on bare soil fractional cover, is proposed and tested. Satisfactory performances are obtained specially for the quantification of clay, sand and CEC using airborne sensor data (R2 of 0.77, 0.79 and 0.54; RPD of 2.14, 2.22 and 1.50, respectively), after spectral data selection is performed; although results obtained for laboratory data are more accurate (R2 of 0.92, 0.85 and 0.75; RPD of 3.52, 2.62 and 2.04, for clay, sand and CEC, respectively). Most importantly, predictions based on airborne-derived spectra for which the bare soil fractional cover is not taken into account show considerable lower accuracy, for example for clay, sand and CEC (RPD of 1.52, 1.64 and 1.16, respectively). Therefore, hyperspectral remotely sensed data can be used to predict topsoil properties of highly weathered soils, although spectral mixture of bare soil with vegetation must be considered in order to achieve an improved prediction accuracy. 相似文献
3.
Soil respiration (Rs) is of great importance to the global carbon balance. Remote sensing of Rs is challenging because of (1) the lack of long-term Rs data for model development and (2) limited knowledge of using satellite-based products to estimate Rs. Using 8-years (2002–2009) of continuous Rs measurements with nonsteady-state automated chamber systems at a Canadian boreal black spruce stand (SK-OBS), we found that Rs was strongly correlated with the product of the normalized difference vegetation index (NDVI) and the nighttime land surface temperature (LSTn) derived from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery. The coefficients of the linear regression equation of this correlation between Rs and NDVI × LSTn could be further calibrated using the MODIS leaf area index (LAI) product, resulting in an algorithm that is driven solely by remote sensing observations. Modeled Rs closely tracked the seasonal patterns of measured Rs and explained 74–92% of the variance in Rs with a root mean square error (RMSE) less than 1.0 g C/m2/d. Further validation of the model from SK-OBS site at another two independent sites (SK-OA and SK-OJP, old aspen and old jack pine, respectively) showed that the algorithm can produce good estimates of Rs with an overall R2 of 0.78 (p < 0.001) for data of these two sites. Consequently, we mapped Rs of forest landscapes of Saskatchewan using entirely MODIS observations for 2003 and spatial and temporal patterns of Rs were well modeled. These results point to a strong relationship between the soil respiratory process and canopy photosynthesis as indicated from the greenness index (i.e., NDVI), thereby implying the potential of remote sensing data for detecting variations in Rs. A combination of both biological and environmental variables estimated from remote sensing in this analysis may be valuable in future investigations of spatial and temporal characteristics of Rs. 相似文献
4.
A. Shamshad C.S. LeowA. Ramlah W.M.A. Wan HussinS.A. Mohd. Sanusi 《International Journal of Applied Earth Observation and Geoinformation》2008
The study evaluated the performance and suitability of AnnAGNPS model in assessing runoff, sediment loading and nutrient loading under Malaysian conditions. The watershed of River Kuala Tasik in Malaysia, a combination of two sub-watersheds, was selected as the area of study. The data for the year 2004 was used to calibrate the model and the data for the year 2005 was used for validation purposes. Several input parameters were computed using methods suggested by other researchers and studies carried out in Malaysia. The study shows that runoff was predicted well with an overall R2 value of 0.90 and E value of 0.70. Sediment loading was able to produce a moderate result of R2 = 0.66 and E = 0.49, nitrogen loading predictions were slightly better with R2 = 0.68 and E = 0.53, and phosphorus loading performance was slightly poor with an R2 = 0.63 and E = 0.33. The erosion map developed was in agreement with the erosion risk map produced by the Department of Agriculture, Malaysia. Rubber estates and urban areas were found to be the main contributors to soil erosion. The simulation results showed that AnnAGNPS has the potential to be used as a valuable tool for planning and management of watersheds under Malaysian conditions. 相似文献
5.
Maarit Middleton Paavo Nrhi Raimo Sutinen 《ISPRS Journal of Photogrammetry and Remote Sensing》2011,66(3):287-297
In a humid northern boreal climate, the success rate of artificial regeneration to Scots pine (Pinus sylvestris L.) can be improved by including a soil water content (SWC) based assessment of site suitability in the reforestation planning process. This paper introduces an application of airborne visible-near-infrared imaging spectroscopic data to identify suitable subregions of forest compartments for the low SWC-tolerant Scots pine. The spatial patterns of understorey plant species communities, recorded by the AISA (Airborne Imaging Spectrometer for Applications) sensor, were demonstrated to be dependant on the underlying SWC. According to the nonmetric multidimensional scaling and correlation results twelve understorey species were found to be most abundant on sites with high soil SWCs. The abundance of bare soil, rocks and abundance of more than ten species indicated low soil SWCs. The spatial patterns of understorey are attributed to time-stability of the underlying SWC patterns. A supervised artificial neural network (radial basis functional link network, probabilistic neural network) approach was taken to classify AISA imaging spectrometer data with dielectric (as a measure volumetric SWC) ground referencing into regimes suitable and unsuitable for Scots pine. The accuracy assessment with receiver operating characteristics curves demonstrated a maximum of 74.1% area under the curve values which indicated moderate success of the NN modelling. The results signified the importance of the training set’s quality, adequate quantity (>2.43 points/ha) and NN algorithm selection over the NN algorithm training parameter optimization to perfection. This methodology for the analysis of site suitability of Scots pine can be recommended, especially when artificial regeneration of former mixed wood Norway spruce (Picea abies L. Karst) - downy birch (Betula pubenscens Ehrh.) stands is being considered, so that artificially regenerated areas to Scots pine can be optimized for forestry purposes. 相似文献
6.
K. Meusburger N. KonzM. Schaub C. Alewell 《International Journal of Applied Earth Observation and Geoinformation》2010
The focus of soil erosion research in the Alps has been in two categories: (i) on-site measurements, which are rather small scale point measurements on selected plots often constrained to irrigation experiments or (ii) off-site quantification of sediment delivery at the outlet of the catchment. Results of both categories pointed towards the importance of an intact vegetation cover to prevent soil loss. With the recent availability of high-resolution satellites such as IKONOS and QuickBird options for detecting and monitoring vegetation parameters in heterogeneous terrain have increased. The aim of this study is to evaluate the usefulness of QuickBird derived vegetation parameters in soil erosion models for alpine sites by comparison to Cesium-137 (Cs-137) derived soil erosion estimates. The study site (67 km2) is located in the Central Swiss Alps (Urseren Valley) and is characterised by scarce forest cover and strong anthropogenic influences due to grassland farming for centuries. A fractional vegetation cover (FVC) map for grassland and detailed land-cover maps are available from linear spectral unmixing and supervised classification of QuickBird imagery. The maps were introduced to the Pan-European Soil Erosion Risk Assessment (PESERA) model as well as to the Universal Soil Loss Equation (USLE). Regarding the latter model, the FVC was indirectly incorporated by adapting the C factor. Both models show an increase in absolute soil erosion values when FVC is considered. In contrast to USLE and the Cs-137 soil erosion rates, PESERA estimates are low. For the USLE model also the spatial patterns improved and showed “hotspots” of high erosion of up to 16 t ha−1 a−1. In conclusion field measurements of Cs-137 confirmed the improvement of soil erosion estimates using the satellite-derived vegetation data. 相似文献
7.
8.
Soil erodibility, which is difficult to estimate and upscaling, was determined in this study using multiple spectral models of soil properties (soil organic matter (SOM), water-stable aggregates (WSA) > 0.25 mm, the geometric mean radius (Dg)). Herein, the soil erodibility indicators were calculated, and soil properties were quantitatively analyzed based on laboratory simulation experiments involving two selected contrasting soils. In addition, continuous wavelet transformation was applied to the reflectance spectra (350–2500 nm) of 65 soil samples from the study area. To build the relationship, the soil properties that control erodibility were identified prior to the spectral analysis. In this study, the SOM, Dg and WSA >0.25 mm were selected to represent the most significant soil properties controlling erodibility and describe the erodibility indicator based on a logarithmic regression model as a function of SOM or WSA > 0.25 mm. Five, six and three wavelet features were observed to calibrate the estimated soil properties model, and the best performance was obtained with a combination feature regression model for SOM (R2 = 0.86, p < 0.01), Dg (R2 = 0.79, p < 0.01) and WSA >0.25 mm (R2 = 0.61, p < 0.01), respectively. One part of the wavelet features captured amplitude variations in the broad shape of the reflectance spectra, and another part captured variations in the shape and depth of the soil dry substances. The wavelet features for the validated dataset used to predict the SOM, WSA >0.25 mm and Dg were not significantly different compared with the calibrated dataset. The synthesized spectral models of soil properties, and the formation of a new equation for soil erodibility transformed from the spectral models of soil properties are presented in this study. These results show that a spectral analytical approach can be applied to complex datasets and provide new insights into emerging dynamic variation with erodibility estimation. 相似文献
9.
10.