首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   13篇
  国内免费   8篇
测绘学   13篇
大气科学   10篇
地球物理   66篇
地质学   11篇
海洋学   5篇
天文学   302篇
综合类   8篇
自然地理   2篇
  2022年   4篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   16篇
  2014年   7篇
  2013年   4篇
  2012年   8篇
  2011年   18篇
  2010年   6篇
  2009年   23篇
  2008年   30篇
  2007年   37篇
  2006年   17篇
  2005年   15篇
  2004年   17篇
  2003年   14篇
  2002年   7篇
  2001年   13篇
  2000年   13篇
  1999年   36篇
  1998年   28篇
  1997年   16篇
  1996年   15篇
  1995年   22篇
  1994年   14篇
  1993年   6篇
  1992年   8篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1982年   1篇
排序方式: 共有417条查询结果,搜索用时 500 毫秒
91.
In the present paper we present the results of measurement of magnetic fields in some sunspots at different heights in the solar atmosphere, based on simultaneous optical and radio measurements. The optical measurements were made by traditional photographic spectral observations of Zeeman splitting in a number of spectral lines originating at different heights in the solar photosphere and chromosphere. Radio observations of the spectra and polarization of the sunspot - associated sources were made in the wavelength range of 2–4 cm using large reflector-type radio telescope RATAN-600. The magnetic field penetrating the hot regions of the solar atmosphere were found from the shortest wavelength of generation of thermal cyclotron emission (presumably in the third harmonic of electron gyrofrequency). For all the eight cases under consideration we have found that magnetic field first drops with height, increases from the photosphere to lower chromosphere, and then decreases again as we proceed to higher chromosphere and chromosphere-corona transition region. Radio measurements were found to be well correlated with optical measurements of magnetic fields for the same sunspot. An alternative interpretation implies that different lines used for magnetic field measurements refer to different locations on the solar surface. If this is the case, then the inversion in vertical gradients of magnetic fields may not exist above the sunspots. Possible sources of systematic and random errors are also discussed.  相似文献   
92.
毫秒脉冲星在时间计量中的可能应用   总被引:1,自引:0,他引:1  
在分析射电脉冲星的自转和时间尺度的基本特征及其相互之间的关系的基础上,讨论了毫秒脉冲星在时间工作中的可能应用。基于毫秒脉冲星的到达时间的测量,经过必要的时空转换、改正及参数拟合,可以建立脉冲星时及综合脉冲星时。虽然脉冲星时及综合脉冲星时对原子有所依赖,但它们,特别是综合脉冲星时,可以用来将原子时的准确度从一个时段传递到另一个时段,并可用来分析原子时的长期稳定度。另外,可以利用双星脉冲星的轨道运动的相位来定义一种动力学时间尺度--双星脉冲星时。  相似文献   
93.
We discuss high resolution measurements on radio refractive index, in the boundary layer and above the atmosphere in the Indian sub-continent spread over a period of more than a solar cycle by making use of airborne microwave refractometers, operating around 9 GHz. Some atmospheric turbulence parameters comparable with earlier results have also been derived. The results demonstrate sharp gradients of radio refractive index, layer structures and the variability of the boundary layer in time and space. An erratum to this article is available at .  相似文献   
94.
We discuss results from a decade long program to study the fine-scale structure and the kinematics of relativistic AGN jets with the aim of better understanding the acceleration and collimation of the relativistic plasma forming AGN jets. From the observed distribution of brightness temperature, apparent velocity, flux density, time variability, and apparent luminosity, the intrinsic properties of the jets including Lorentz factor, luminosity, orientation, and brightness temperature are discussed. Special attention is given to the jet in M87, which has been studied over a wide range of wavelengths and which, due to its proximity, is observed with excellent spatial resolution. Most radio jets appear quite linear, but we also observe curved non-linear jets and non-radial motions. Sometimes, different features in a given jet appear to follow the same curved path but there is evidence for ballistic trajectories as well. The data are best fit with a distribution of Lorentz factors extending up to γ∼30 and intrinsic luminosity up to ∼1026 W Hz−1. In general, gamma-ray quasars may have somewhat larger Lorentz factors than non gamma-ray quasars. Initially the observed brightness temperature near the base of the jet extend up to ∼5×1013 K which is well in excess of the inverse Compton limit and corresponds to a large excess of particle energy over magnetic energy. However, more typically, the observed brightness temperatures are ∼2×1011 K, i.e., closer to equipartition.  相似文献   
95.
We present a model to estimate the synchrotron radio emission generated in microquasar (MQ) jets due to secondary pairs created via decay of charged pions produced in proton-proton collisions between stellar wind ions and jet relativistic protons. The synchrotron radiation produced by secondary electrons/positrons is computed using consistently derived particle energy distributions. Energy losses due to synchrotron and inverse Compton (IC) processes, and adiabatic expansion, are taken into account. The space parameter for the model is explored and the corresponding spectral energy distributions (SEDs) are presented. We conclude that secondary leptonic emission represents a significant though hardly dominant contribution to the total radio emission in MQs, with observational consequences that can be used to test some still unknown processes occurring in these objects as well as the nature of the matter outflowing in their jets.   相似文献   
96.
We investigate the total kinetic powers (L j) and ages (t age) of powerful jets of four FR II radio sources (Cygnus A, 3C 223, 3C 284, and 3C 219) by the detail comparison of the dynamical model of expanding cocoons with observed ones. It is found that these sources have quite large kinetic powers with the ratio of L j to the Eddington luminosity (L Edd) resides in 0.02<L j/L Edd<10. Reflecting the large kinetic powers, we also find that the total energy stored in the cocoon (E c) exceed the energy derived from the minimum energy condition (E min ): 2<E c/E min <160. This implies that a large amount of kinetic power is carried by invisible components such as thermal leptons (electron and positron) and/or protons.  相似文献   
97.
98.
99.
Radio OH observations of 9P/Tempel 1 before and after Deep Impact   总被引:1,自引:0,他引:1  
We observed 18-cm OH emission in Comet 9P/Tempel 1 before and after Deep Impact. Observations using the Arecibo Observatory 305 m telescope took place between 8 April and 9 June, 2005, followed by post-impact observations using the National Radio Astronomy Observatory 100 m Green Bank Telescope 4-12 July, 2005. The resulting spectra were analyzed with a kinematic Monte Carlo model which allows estimation of the OH production rate, neutral gas outflow velocity, and distribution of the out-gassing from the nucleus. We detected typically 24% variability from the overall OH production rate trend in the two months leading up to the impact, and no dramatic increase in OH production in the days post-impact. Generally, the coma is well-described, within uncertainties, by a symmetric model with OH production rates from 1.6 to , and mean water outflow velocity of . At these low production rates, collisional quenching is expected to occur only within 20,000 km of the nucleus. However, our best-fit average quenching radius is 64,200 ± 22,000 km in April and May.  相似文献   
100.
Comet 9P/Tempel 1 was the target of a multi-wavelength worldwide investigation in 2005. The NASA Deep Impact mission reached the comet on 4.24 July 2005, delivering a 370-kg impactor which hit the comet at 10.3 km s−1. Following this impact, a cloud of gas and dust was excavated from the comet nucleus. The comet was observed in 2005 prior to and after the impact, at 18-cm wavelength with the Nançay radio telescope, in the millimeter range with the IRAM and CSO radio telescopes, and at 557 GHz with the Odin satellite. OH observations at Nançay provided a 4-month monitoring of the outgassing of the comet from March to June, followed by the observation of H2O with Odin from June to August 2005. The peak of outgassing was found to be around between May and July. Observations conducted with the IRAM 30-m radio telescope in May and July 2005 resulted in detections of HCN, CH3OH and H2S with classical abundances relative to water (0.12, 2.7 and 0.5%, respectively). In addition, a variation of the HCN production rate with a period of 1.73±0.10 days was observed in May 2005, consistent with the 1.7-day rotation period of the nucleus. The phase of these variations, as well as those of CN seen in July by Jehin et al. [Jehin, E., Manfroid, J., Hutsemékers, D., Cochran, A.L., Arpigny, C., Jackson, W.M., Rauer, H., Schulz, R., Zucconi, J.-M., 2006. Astrophys. J. 641, L145-L148], is consistent with a rotation period of the nucleus of 1.715 days and a strong variation of the outgassing activity by a factor 3 from minimum to maximum. This also implies that the impact took place on the rising phase of the “natural” outgassing which reached its maximum ≈4 h after the impact. Post-impact observations at IRAM and CSO did not reveal a significant change of the outgassing rates and relative abundances, with the exception of CH3OH which may have been more abundant by up to one order of magnitude in the ejecta. Most other variations are linked to the intrinsic variability of the comet. The Odin satellite monitored nearly continuously the H2O line at 557 GHz during the 38 h following the impact on the 4th of July, in addition to weekly monitoring. Once the periodic variations related to the nucleus rotation are removed, a small increase of outgassing related to the impact is present, which corresponds to the release of ≈5000±2000 tons of water. Two other bursts of activity, also observed at other wavelengths, were seen on 23 June and 7 July; they correspond to even larger releases of gas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号