首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   396篇
  免费   13篇
  国内免费   8篇
测绘学   13篇
大气科学   10篇
地球物理   66篇
地质学   11篇
海洋学   5篇
天文学   302篇
综合类   8篇
自然地理   2篇
  2022年   4篇
  2021年   3篇
  2019年   3篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   16篇
  2014年   7篇
  2013年   4篇
  2012年   8篇
  2011年   18篇
  2010年   6篇
  2009年   23篇
  2008年   30篇
  2007年   37篇
  2006年   17篇
  2005年   15篇
  2004年   17篇
  2003年   14篇
  2002年   7篇
  2001年   13篇
  2000年   13篇
  1999年   36篇
  1998年   28篇
  1997年   16篇
  1996年   15篇
  1995年   22篇
  1994年   14篇
  1993年   6篇
  1992年   8篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   2篇
  1987年   2篇
  1982年   1篇
排序方式: 共有417条查询结果,搜索用时 406 毫秒
101.
Zongjun Ning  H. Wu  F. Xu  X. Meng 《Solar physics》2007,242(1-2):101-109
We analyze the pulses in high-frequency drift radio structures observed by the spectrometer at Purple Mountain Observatory (PMO) over the frequency range of 4.5 – 7.5 GHz during the 18 March 2003 solar flare. A number of individual pulses are determined from the drifting radio structures after the detected gradual component subtraction. The frequency distributions of microwave pulse occurrence as functions of peak flux, duration, bandwidth, and time interval between two adjacent pulses exhibit a power-law behavior, i.e. . From regression fitting in log-log space, we obtain the power-law indexes, α P=7.38±0.40 for the peak flux, α D=5.39±0.86 for the duration, and α B=6.35±0.56 for the bandwidth. We find that the frequency distribution for the time interval displays a broken power law. The break occurs at about 500 ms, and their indexes are α W1=1.56±0.08 and α W2=3.19±0.12, respectively. Our results are consistent with the previous findings of hard X-ray pulses, type III bursts, and decimetric millisecond spikes.  相似文献   
102.
The analysis of WIND/WAVES RAD2 spectra with fine structure in the form of different fibers in 14 events covering 1997?–?2005 is carried out. A splitting of broad bands of the interplanetary (IP) type II bursts into narrow band fibers of different duration is observed. The instantaneous-frequency bandwidth of fibers is stable: 200?–?300 kHz for slow-drifting fibers in type II bursts, and 700?–?1000 kHz for fast-drifting fibers in type II?+?IV (continuum). Intermediate drift bursts (IDB or fiber bursts) and zebra patterns with variable frequency drift of stripes, typical for the metric range, were not found. Comparison of spectra with the Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph (SOHO/LASCO C2) images shows a connection of the generation of the fiber structures with the passage of shock fronts through narrow jets in the wake of Coronal Mass Ejections (CME). Therefore the most probable emission mechanism of fibers in IP type II bursts appears to be resonance transition radiation (RTR) of fast particles at the boundary of two media with different refractive indices. The same mechanism is also valid for striae in the type III bursts. Taking into account a high-density contrast in the CME wake and the actually observed small-scale inhomogeneities, the effectiveness of the RTR mechanism in IP space must be considerably higher than in the meter or decimeter wavelengths. For the most part the fibers in the type IV continuum at frequencies of 14?–?8 MHz were seen as the direct expansion of similar fine structure (as fibers or “herringbone” structure) in the decametric range observed with the Nançay and IZMIRAN spectrographs.  相似文献   
103.
In the years 2002 – 2005, 38 groups of the reverse drift bursts (RDBs) were observed in the 0.8 – 4.5 GHz frequency range by the Ondřejov radiospectrograph. In 21 cases, which were observed at the times of the RHESSI observations, spatial structure, positional changes, and spectra of X-ray sources during RDB observations are studied in detail. First, based on the frequency drift and the spatial structure of the associated X-ray source, the events are classified as: (a) fast drifting RDBs with a compact X-ray source, (b) fast drifting RDBs with a multiple X-ray source (FM), and slowly drifting RDBs. Then, the spectra of X-ray sources at the times of RDBs are analyzed. It is found that most fast drifting RDBs (16 of 17 cases) are associated with the spectra having a distinct power-law (non-thermal) component. In contrast, the X-ray spectra associated with the slowly drifting RDBs are predominantly purely thermal (in three out of four cases; in the 26 July 2004, case the X-ray spectrum is thermal and high temperature, with non-thermal component). Two special cases of RDBs observed during the 28 October 2003, and 23 July 2004, flares are added for comparison. The most frequent events are those with fast drifting RDBs, a compact short-lasting X-ray sources, and a power-law X-ray spectrum. The individual reverse drift bursts (∼1 s duration) do not show a clear temporal association with individual peaks of hard X-ray bursts. During slowly drifting RDBs the shape of the associated X-ray source changed or expanded. Among them the most interesting one was observed in 26 July 2004, when the very slowly drifting RDBs (+40 MHz s−1) were associated with an X-ray loop-like source continuously elongating in the southwest direction. In the most cases the model of RDBs with electron beams is compatible with the observations, but in flares on 26 July 2004, and 28 October 2003, the RDBs are probably generated by some other type of an agent; we propose here a thermal conduction front.  相似文献   
104.
On 4 July 2005 at 5:52 UT the Deep Impact mission successfully completed its goal to hit the nucleus of 9P/Tempel 1 with an impactor, forming a crater on the nucleus and ejecting material into the coma of the comet. NASA's Submillimeter Wave Astronomy Satellite (SWAS) observed the 110-101 ortho-water ground-state rotational transition in Comet 9P/Tempel 1 before, during, and after the impact. No excess emission from the impact was detected by SWAS and we derive an upper limit of 1.8×107 kg on the water ice evaporated by the impact. However, the water production rate of the comet showed large natural variations of more than a factor of three during the weeks before and after the impact. Episodes of increased activity with alternated with periods with low outgassing (). We estimate that 9P/Tempel 1 vaporized a total of N∼4.5×1034 water molecules (∼1.3×109 kg) during June-September 2005. Our observations indicate that only a small fraction of the nucleus of Tempel 1 appears to be covered with active areas. Water vapor is expected to emanate predominantly from topographic features periodically facing the Sun as the comet rotates. We calculate that appreciable asymmetries of these features could lead to a spin-down or spin-up of the nucleus at observable rates.  相似文献   
105.
Photometry and thermal lightcurves of six large asteroids (1-Ceres, 2-Pallas, 3-Juno, 12-Victoria, 85-Io and 511-Davida) have been observed at 870 μm (345 GHz) using the MPIfR 19-Channel Bolometer of the Heinrich-Hertz Submillimeter Telescope. Only Ceres displayed a lightcurve with an amplitude (∼50%, peak to peak) that was significantly greater than the uncertainty in the observations. When thermal fluxes and brightness temperatures are corrected for heliocentric distance and albedo, there is a significant relation with the sub-solar latitude of the asteroid, or the local season of the asteroid. No such trend can be found between observations with solar phase angle. These results are evidence that most of the submillimeter thermal radiation is emitted from below the diurnal thermal wave. Comparing the observed trend with model output suggests that the submillimeter radiation from all the asteroids we observed is best modeled by surface material with low thermal inertia (<15 J m−2 s−0.5 K−1, consistent with mid-infrared observations of large main-belt asteroids) and a refractive index closer to unity relative to densities inferred from radar experiments, implying a veneer of material over the asteroid surface with a density less than 1000 kg m−3. More data with better signal-to-noise and aspect coverage could improve these models and constrain physical properties of asteroid surface materials. This would also allow asteroids to be used as calibration sources with accurately known and stable, broadband fluxes at long wavelengths.  相似文献   
106.
Close to 2000 laboratory measurements of the microwave opacity and refractivity of gaseous NH3 in an H2/He atmosphere have been conducted in the 1.1-20 cm wavelength range (1.5-27 GHz) at pressures from 30 mbar to 12 bar and at temperatures from 184 to 450 K. The mole fraction of NH3 ranged from 0.06 to 6% with some additional measurements of pure NH3. The high accuracy of these results have enabled development of a new model for the opacity of NH3 in a H2/He atmosphere under jovian conditions. The model employs the Ben-Reuven lineshape applied to the published inversion line center frequencies and intensities of NH3 (JPL Catalog—[Pickett, H.M., Poynter, R.L., Cohen, E.A., Delitsky, M.L., Pearson, J.C., Müller, H.S.P., 1998. J. Quant. Spectrosc. Radiat. Trans. 60, 883-890]) with empirically-fitted line parameters for H2 and He broadening, and for the self-broadening of some previously unmeasured ammonia inversion lines. The new model for ammonia opacity will provide reliable results for temperatures from 150 to 500 K, at pressures up to 50 bar and at frequencies up to 40 GHz. These results directly impact the retrieval of jovian atmospheric constituent abundances from the Galileo Probe radio signal absorption measurements, from microwave emission measurements conducted with Earth-based radio telescopes and with the future NASA Juno mission, and studies of Saturn's atmosphere conducted with the Cassini Radio Science Experiment and the Cassini RADAR 2.1 cm passive radiometer.  相似文献   
107.
On the basis of our multiwavelength observations made with the one-dimensional RATAN-600 radio telescope, we study the inversion of the circular polarization in the solar microwave emission at different frequencies. The inversion is detected in the emission of flare-producing active regions (FPARs) at various stages of their development, starting from the pre-flare stage. During the latest 23rd solar cycle maximum, numerous FPARs revealed spectral inhomogeneities in their polarized microwave radiation (Bogod and Tokhchukova, 2003, Astron. Lett. 29, 263). Here, we discuss a particular case of such inhomogeneities, the frequency-dependent double inversion of the sign of circular polarization, which probably reflects some essential processes in FPARs. We consider several mechanisms for the double inversion: linear interaction of waves in the region of a quasitransverse magnetic field, the propagation of waves through a region of zero magnetic field, the scattering of radio waves on waves of high-frequency plasma turbulence, the influence of the current fibrils on the propagation of the radio emission, and the magnetic “dips,” in which the direction of magnetic field lines changes the sign relative to the observer. All of them have shortcomings, but the last mechanism explains the observations the best.  相似文献   
108.
《Experimental Astronomy》2009,23(1):221-244
Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.  相似文献   
109.
Jet physics is again flourishing as a result of Chandra’s ability to resolve high-energy emission from the radio-emitting structures of active galaxies and separate it from the X-ray-emitting thermal environments of the jets. These enhanced capabilities have coincided with an increasing interest in the link between the growth of super-massive black holes and galaxies, and an appreciation of the likely importance of jets in feedback processes. I review the progress that has been made using Chandra and XMM-Newton observations of jets and the medium in which they propagate, addressing several important questions, including: Are the radio structures in a state of minimum energy? Do powerful large-scale jets have fast spinal speeds? What keeps jets collimated? Where and how does particle acceleration occur? What is jet plasma made of? What does X-ray emission tell us about the dynamics and energetics of radio plasma/gas interactions? Is a jet’s fate determined by the central engine?  相似文献   
110.
俞雪华  徐民健 《天文学报》1995,36(4):359-366
本文采用等离子体动力学方法,研究了日冕条件下磁化非相对论热等离子体对太阳射电辐射产生的电子回旋共振吸收,并在辐射频率等于电子回旋谐波频率时求得n≥2谐波吸收率的近似表示式,以及其对等离子体温度,出射角度和谐波数的变化规律,在应用部分,讨论了电子回旋共振吸收对于太阳射电尖峰爆发的影响,认为目前观测到的尖峰爆,大多数高能电子束来自日冕的内层。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号