首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2111篇
  免费   284篇
  国内免费   398篇
测绘学   25篇
大气科学   3篇
地球物理   515篇
地质学   1737篇
海洋学   110篇
天文学   17篇
综合类   60篇
自然地理   326篇
  2024年   9篇
  2023年   33篇
  2022年   37篇
  2021年   49篇
  2020年   52篇
  2019年   83篇
  2018年   55篇
  2017年   47篇
  2016年   53篇
  2015年   74篇
  2014年   81篇
  2013年   177篇
  2012年   107篇
  2011年   71篇
  2010年   52篇
  2009年   116篇
  2008年   139篇
  2007年   115篇
  2006年   129篇
  2005年   106篇
  2004年   146篇
  2003年   98篇
  2002年   115篇
  2001年   87篇
  2000年   76篇
  1999年   75篇
  1998年   89篇
  1997年   81篇
  1996年   77篇
  1995年   73篇
  1994年   78篇
  1993年   46篇
  1992年   36篇
  1991年   18篇
  1990年   27篇
  1989年   20篇
  1988年   15篇
  1987年   12篇
  1986年   9篇
  1985年   9篇
  1984年   3篇
  1983年   4篇
  1981年   3篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1973年   1篇
排序方式: 共有2793条查询结果,搜索用时 0 毫秒
91.
92.
93.
F. Gutirrez 《Geomorphology》2004,57(3-4):423-435
The salt valleys over the axis of the salt-cored anticlines in the Paradox fold and fault belt (Canyonlands, Utah and Colorado) are created by subsidence of the anticline crests. Traditionally, the collapse of the anticlinal crests was attributed to dissolution of the salt walls (diapirs) forming the anticline cores. Recent studies based on scaled physical models and field observations propose that the salt valleys are a result of regional extension and that salt dissolution had only a minor influence in the development of the axial depressions. This paper presents several arguments and lines of evidence that refute the tectonic model and support the salt dissolution subsidence interpretation.The development of contractional structures in salt dissolution experiments led the advocates of the tectonic interpretation to reject the dissolution-induced subsidence explanation. However, these salt dissolution models do not reproduce the karstification of salt walls in a realistic way, since their analog involves removal of salt from the base of the diapirs during the experiments. Additionally, numerous field examples and laboratory models conducted by other authors indicate that brittle subsidence in karst settings is commonly controlled by subvertical gravity faults.Field evidence against the regional extension model includes (1) a thick cap rock at the top of the salt walls, (2) the concentration of subsidence deformation structures along the crest of the anticlines (salt walls), (3) deformational structures not consistent with the proposed NNE extension, like crestal synforms and NE–SW grabens, (4) dissolution-induced subsidence structures controlled by ring faulting, revealing deep-seated dissolution, (5) large blocks foundered several hundred meters into the salt wall, (6) evidence of recent and active dissolution subsidence, and (7) the aseismic nature of the recently active collapse faults. Although underground salt dissolution seems to be the main cause for the generation of the salt valleys, this phenomenon may have been favored by regional extension tectonics that enhance the circulation of groundwater and salt dissolution.  相似文献   
94.
This paper presents the preliminary results from a study of Holocene-emerged shorelines, marine notches, and their tectonic implications along the Jalisco coast. The Pacific coast of Jalisco, SW Mexico, is an active tectonic margin. This coast has been the site of two of the largest earthquakes to occur in Mexico this century: the 1932 (Mw 8.2) Jalisco earthquake and the 1995 (Mw 8.0) Colima earthquake. Measurement and preliminary radiocarbon dating of emergent paleoshorelines along the Jalisco coast provide the first constraints upon the timing for tectonic uplift. Along this coastline, uplifted Holocene marine notches and wave-cut platforms occur at elevations ranging from ca. 1 to 4.5 m amsl. In situ intertidal organisms dated with radiocarbon, the first ever reported for the Jalisco area, provide preliminary results that record tectonic uplift during at least the past 1300 years BP at an average rate of about 3 mm/year. We propose a model in which coseismic subsidence produced by offshore earthquakes is rapidly recovered during the postseismic and interseismic periods. The long-term period is characterized by slow tectonic uplift of the Jalisco coast. We found no evidence of coastal interseismic and long-term subsidence along the Jalisco coast.  相似文献   
95.
The formation of narrow, rapidly deforming plate boundaries separating strong plate interiors are integral components of the generation of plate tectonics from mantle convection. The development of narrow plate boundaries requires the interaction of a non-linear rheology and convection. One such non-linear rheology is two-phase damage theory which employs a non-equilibrium relation between interfacial surface energy, pressure and viscous deformation, thereby forming a theoretical model for void generation. Two-phase damage theory was recently extended to allow for deformational work to increase the fineness (reduce the grain size) of the matrix phase. We present results testing two-phase damage theory in a 2-D convectively driven system where we allow for (1) pure void-generating damage, (2) pure fineness-generating damage and (3) combined void- and fineness-generating damage. Pure void-generating damage is found to be unsuccessful at producing plate-like features. Fineness-generating damage is successful at inducing plate-like behaviour in certain circumstances, including increasing viscosity sensitivity to fineness and certain regimes of damage input and healing rate. Cases with combined void- and fineness-generating damage produce significantly more localization than the end-members due to the apparent increase of deformational work input into fineness generation. The interaction of microcracks and grain size reduction in two-phase damage theory suggests a rheological model for shear localization necessary for the formation of plate tectonic boundaries.  相似文献   
96.
The Gohpur–Ganga section is located southwest of Itanagar, India. The study area and its adjacent regions lie between the Main Boundary Thrust (MBT) and the Himalayan Front Fault (HFF) within the Sub-Himalaya of the Eastern Himalaya. The Senkhi stream, draining from the north, passes through the MBT and exhibits local meandering as it approaches the study area. Here, five levels of terraces are observed on the eastern part, whereas only four levels of terraces are observed on the western part. The Senkhi and Dokhoso streams show unpaired terraces consisting of very poorly sorted riverbed materials lacking stratification, indicating tectonic activity during deposition. Crude imbrications are also observed on the terrace deposits. A wind gap from an earlier active channel is observed at latitude 27°04′42.4″ N and longitude 93°35′22.4″ E at the height of about 35 m from the present active channel of Senkhi stream. Linear arrangements of ponds trending northeast–southwest on the western side of the study section may represent the paleochannel of Dokhoso stream meeting the Senkhi stream abruptly through this gap earlier. Major lineament trends are observed along NNE–SSW, NE–SW and ENE–WSW direction. The Gohpur–Ganga section is on Quaternary deposits, resting over the Siwaliks with angular contact. Climatic changes of Pleistocene–Holocene times seem to have affected the sedimentation pattern of this part of the Sub-Himalaya, in association with proximal tectonism associated with active tectonic activities, which uplifted the Quaternary deposits. Older and younger terrace deposits seem to mark the Pleistocene–Holocene boundary in the study area with the older terraces showing a well-oxidized and semi-consolidated nature compared to the unoxidized nature of the younger terraces.  相似文献   
97.
Integration of geomorphology, stratigraphy, sedimentology and morphotectonics in the analysis of the lower Cecina River reach, coastal Tuscany, reveals an undocumented historical channel avulsion. Geomorphological evidence and radiocarbon dating support that, from the Last Glacial Maximum until the end of the 16th century, the Cecina River flowed north of the present course and formed a well-developed cuspate delta. Two concurrent factors, active tectonics as a preparing factor and discharge regime as an activation factor, are thus inferred to have favored the avulsion of Cecina River. Fragmentary archaeological and historical records indicate that the late Holocene Cecina River plain was virtually unpopulated until the latest 16th century. This seems the main reason why high-magnitude hydrological events and prominent river channel avulsions were not reported in historical chronicles. From this perspective, geomorphological data may provide important knowledge and understanding of recent dynamics of environmental change when historical record is lacking or missing.  相似文献   
98.
Much geological research has illustrated the transition of paleoenvironmental patterns during the Cenozoic from a planetary-wind-dominant type to a monsoon-dominant type, indicating the initiation of the East Asian monsoon and inland-type aridity. However, there is a dispute about the causes and mechanisms of the transition, especially about the impact of the Himalayan/Tibetan Plateau uplift and the Paratethys Sea retreat. Thirty numerical sensitivity experiments under different land-sea distributions and Himalayan/Tibetan Plateau topography conditions are performed here to simulate the evolution of climate belts with emphasis on changes in the rain band, and these are compared with the changes in the paleoenvironmental patterns during the Cenozoic recovered by geological records. The consistency between simulations and the geological evidence indicates that both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of the monsoon-dominant environmental pattern. Furthermore, the simulations show the monsoon-dominant environmental pattern comes into being when the Himalayan/Tibetan Plateau reaches 1000–2000 m high and the Paratethys Sea retreats to the Turan Plate.  相似文献   
99.
100.
Results of palaeomagnetic investigations of the Lower Cretaceous teschenitic rocks in the Silesian unit of the Outer Western Carpathians in Poland bring evidence for pre-folding magnetization of these rocks. The mixed-polarity component reveals inclinations, between 56° and 69°, which might be either of Cretaceous or Tertiary age. Apparently positive results of fold and contact tests in some localities and presence of pyrhotite in the contact aureole suggest that magnetization is primary, although a Neogene or earlier remagnetization cannot be totally excluded since inclination-only test between localities gives 'syn-folding' results. Higher palaeoinclinations (66°–69°) correlate with a younger variety of teschenitic rocks dated for 122–120 Ma, while lower inclinations (56°–60°) with an older variety (138–133 Ma). This would support relatively high palaeolatitudes for the southern margin of the Eurasian plate in the late part of the Early Cretaceous and relatively quick northward drift of the plate in this epoch, together with the Silesian basin at its southern margin. Declinations are similar to the Cretaceous–Tertiary palaeodeclinations of stable Europe in the eastern part of the studied area but rotated ca. 14°–70° counter-clockwise in the western part. This indicates, together with older results from Czech and Slovakian sectors of the Silesian unit, a change in the rotation pattern from counter-clockwise to clockwise at the meridian of 19°E. The rotations took place before the final collision of the Outer Carpathians nappe stack with the European foreland.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号