首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   10篇
  国内免费   22篇
测绘学   3篇
大气科学   8篇
地球物理   102篇
地质学   43篇
海洋学   45篇
综合类   3篇
自然地理   27篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   2篇
  2017年   7篇
  2016年   8篇
  2015年   5篇
  2014年   7篇
  2013年   13篇
  2012年   8篇
  2011年   15篇
  2010年   14篇
  2009年   19篇
  2008年   29篇
  2007年   11篇
  2006年   14篇
  2005年   8篇
  2004年   4篇
  2003年   10篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   4篇
  1998年   4篇
  1997年   6篇
  1995年   3篇
  1994年   3篇
  1993年   1篇
  1992年   4篇
  1991年   1篇
  1989年   3篇
  1988年   1篇
排序方式: 共有231条查询结果,搜索用时 31 毫秒
31.
The influence of landscape on nutrient concentration and yield was analyzed in a tropical catchment, the Guare River in northern Venezuela. Spatial and temporal variation in nitrate, SRP and total P were determined in 15 sites located along the river mainstem and tributaries. Higher nitrate concentrations and yields were reported from upper sites and both decreased in the downstream direction along the river mainstem. These trends appear to be related to more pronounced slopes and larger proportions of agricultural and forest lands in subcatchments located in the upper part of the basin, and dense algal mats in the lower reaches. Nitrate values were higher during periods of high discharge, suggesting that nitrate is primarily transported by shallow subsurface flow. SRP represented between 60 and 80% of total P. Phosphorus concentrations were homogeneous along the river mainstem and showed little seasonal variation, while yields were higher in the upper basin. Multiple regression identified slope, runoff and agriculture as primary predictors of nitrate and phosphorus across the watershed, which suggests that both natural and anthropogenic landscape characteristics have a strong influence on nutrient levels in the Guare catchment.  相似文献   
32.
33.
We investigated the accumulation and influence of bioavailable P (BAP) in sediments of a stream located in an agricultural area of the Lake Mendota watershed in Wisconsin, USA. During hydrologic events, the stream carried high concentrations of suspended sediment (up to 250 mg/l) and BAP (up to 2.5 mg/l). Bed sediments were highly enriched in BAP, as inventories of BAP in the top 10 cm of sediment ranged from 143 to 14,500 μg P/cm2. Space variations in BAP inventories were related to site-specific hydrodynamics and geochemical factors, including iron (Fe; r 2 = 0.71) and aluminum (Al; r 2 = 0.54) concentrations. Most sites behaved as potential sinks for dissolved reactive phosphate during hydrologic events and potential sources during base-flow periods. Through the combination of site-specific factors and geochemical controls, Dorn Creek modifies the amount, timing, and composition of P delivered from the watershed to downstream sites and water bodies.  相似文献   
34.
This global spatially explicit (0.5 by 0.5 degree) analysis presents the nitrogen (N) and phosphorus (P) inputs, processing and biogeochemical retention and delivery to surface waters and river export to coastal seas according to the five shared socioeconomic pathways (SSP). Four systems are considered: (i) human system; (ii) agriculture; (iii) aquaculture; (iv) nature. Exploring the changes during 1980–2015 and 2015–2050 according to the SSPs shows that the natural nutrient sources have been declining in the past decades and will continue to decline in all SSPs in future decades due to massive land transformations, while agriculture, human sewage and aquaculture are becoming increasingly dominant (globally up to 80% of nutrient delivery). More efforts than those employed in any of the SSPs are needed to slow down the global nutrient cycles. One of the drivers of the proliferation of harmful algal blooms is the tendency towards increasing N:P ratios in global freshwaters and export to the global coastal seas; this is the result of increasing N:P in inputs in food production, more efficient biogeochemical retention of P than of N in river basins, and groundwater N legacies, which seems to be most pronounced in a united world that strives after sustainability. The diverging strategies to achieve UN Sustainable Development Goals 14 (life below water), 2 (zero hunger) and 6 (clean water and sanitation) therefore require a balanced management system for both N and P in all systems, that accounts for future nutrient legacies.  相似文献   
35.
Information about the distribution of grass foliar nitrogen (N) and phosphorus (P) is important for understanding rangeland vitality and for facilitating the effective management of wildlife and livestock. Water absorption effects in the near-infrared (NIR) and shortwave-infrared (SWIR) regions pose a challenge for nutrient estimation using remote sensing. The aim of this study was to test the utility of water-removed (WR) spectra in combination with partial least-squares regression (PLSR) and stepwise multiple linear regression (SMLR) to estimate foliar N and P, compared to spectral transformation techniques such as first derivative, continuum removal and log-transformed (Log(1/R)) spectra. The study was based on a greenhouse experiment with a savanna grass species (Digitaria eriantha). Spectral measurements were made using a spectrometer. The D. eriantha was cut, dried and chemically analyzed for foliar N and P concentrations. WR spectra were determined by calculating the residual from the modelled leaf water spectra using a nonlinear spectral matching technique and observed leaf spectra. Results indicated that the WR spectra yielded a higher N retrieval accuracy than a traditional first derivative transformation (R2=0.84, RMSE = 0.28) compared to R2=0.59, RMSE = 0.45 for PLSR. Similar trends were observed for SMLR. The highest P retrieval accuracy was derived from WR spectra using SMLR (R2=0.64, RMSE = 0.067), while the traditional first derivative and continuum removal resulted in lower accuracy. Only when using PLSR did the first derivative result in a higher P retrieval accuracy (R2=0.47, RMSE = 0.07) than the WR spectra (R2=0.43, RMSE = 0.070). It was concluded that the water removal technique is a promising technique to minimize the perturbing effect of foliar water content when estimating grass nutrient concentrations.  相似文献   
36.
沉积物磷原位钝化技术研究进展   总被引:1,自引:0,他引:1  
水体磷含量是湖泊富营养化最主要的限制因子之一.伴随着湖泊流域工农业发展,外源污染物的长期输入致使沉积物中蓄积了大量的磷及其他污染物.湖泊沉积物一方面是水体磷重要的汇,但另一方面还是水体磷重要的源.在单纯控制湖泊外源污染条件下,沉积物磷的释放仍可导致水体持续富营养化,湖水水质得到明显改善通常需要数十年,因此控制湖泊沉积物内源污染释放是快速恢复湖泊水质必不可少的措施.沉积物内源污染控制技术包括生物修复、环保疏浚以及原位钝化技术.受水深等环境条件限制,生物修复技术和环保疏浚在深水、亚深水型湖泊难以实施.沉积物磷原位钝化技术具有生态、经济、快速和效果稳定等特点,在控制湖泊底泥内源污染中可望发挥重要作用,尤其适合于深水、亚深水型湖泊内源污染控制.系统阐述了不同沉积物原位钝化剂的钝化原理,对比分析了铝盐、铁盐、钙盐和粘度矿物作为磷钝化剂的优缺点和应用条件,概述了国内外沉积物原位钝化技术的应用现状,在此基础上提出了沉积物原位钝化技术未来的重点研究方向:一是研究发展新型钝化剂;二是因地制宜,探索适合不同类型湖泊的底泥原位钝化技术体系;三是加强底泥原位钝化技术与其他技术的联合应用研究与示范;四是加强钝化剂负面影响评价,建立科学的应用技术方案.  相似文献   
37.
In order to study the sediment response to different addition of organic matter, we added cultures of the dinoflagellates Scrippsiella hangoei and Woloszynskia halophila and the diatom Pauliella taeniata to aquaria containing natural sediment. The biomass added was 1550–3260 mg C m−2, and in the control, no biomass was added (n=3). Oxygen profiles at the sediment–water interface and inorganic nutrients in the near bottom water were determined once a week. In the additions of P. taeniata and W. halophila the sediment quickly became anoxic, and subsequently there was a flux of >1 mmol PO43− m−2 d−1 out of the sediment in these treatments. The majority of the released P came from P stored in the sediment and not from the organic phosphorus added. The result was very different for the S. hangoei addition. This species underwent a life cycle change to form temporary cysts. During this process there was a net uptake of nutrients. After the formation of cysts the concentration of inorganic nutrient was similar to that of the control. Cysts generally survive for long periods in the sediment (months to years) before germinating, but can also be permanently buried in the sediment. The novel idea presented here is that the phytoplankton composition may directly affect sediment processes such as oxygen consumption and phosphorus release, through species-specific life cycle changes and yields of resting stages produced prior to sedimentation. This can be an important aspect of nutrient cycling in eutrophic waters, like the Baltic Sea, where there is large year-to-year difference in the amount of resting stages settling at the sea floor, mainly due to differences in abundance of diatoms and dinoflagellates during the spring bloom. If yields of resting stages change, e.g. due to changes in the phytoplankton community, it may lead to alterations in the biogeochemical cycling of nutrients.  相似文献   
38.
Algae which bloom in open water and accumulate in the littoral zones may affect the biogeochemical cycle of phosphorus in eutrophic lakes. To determine such effects, a part of the lakeshore with little allochthonous nutrient input in Taihu Lake, China was selected for this field study. Distinct differences in sedimentary P forms were found among the different littoral subzones. The surface sedimentary total phosphorus (TP) content was 655 mg/kg in the eulittoral subzone and 631 to 641 mg/kg in the infralittoral subzone. Both were much higher than that in the profundal zone (410 mg/kg). Calcium‐bound P (Ca‐P) was significantly correlated to exchangeable P (Ex‐P), and they both had the highest contents in the infralittoral subzone and the lowest in the profundal zone. The aluminum‐ and iron‐bound P (Al‐P, Fe‐P) contents decreased from land to water along the ecotone section. Lower Fe/P ratios and higher Al‐P/Fe‐P ratios appeared in the infralittoral subzone, as compared with the profundal zone. This suggested that the accumulated algae could lead to a great deposit of P in the littoral zones. However, the active sedimentary P form transformation in the littoral zones would also result in a partial release of the accumulated P to the overlying water.  相似文献   
39.
Paleolimnological studies show that phosphorus (P) loads to the federally protected St. Croix River, a tributary of the Upper Mississippi River, have increased about threefold over the last century. Ongoing management efforts to protect and restore the river hinge on the question of whether the increased nutrient load results from point-source discharges or nonpoint runoff from agricultural intensification and urban expansion. Here we determine the historical contribution of point source phosphorus (P) loads to the St. Croix watershed from 1900–2000 A.D. Historical point source loads were estimated based on discharge volumes, demographics, industrial sources, wastewater technologies, and facility discharge records, where available. Sewering in the basin began in 1905, and since that time, there have been as many as 169 permitted point source dischargers basinwide, including municipal, industrial, and agricultural facilities. Early wastewater management typically discharged untreated sewage; technological advances had secondary treatment in place at most facilities by the 1960s–1970s and much of the municipal population was served by tertiary treatment by the 1990s. Peak nutrient discharges from point sources occurred in the 1960s–1970s. Detergent phosphorus bans instituted in the late 1970s for Minnesota and Wisconsin, greater use of land and groundwater effluent disposal, and improvements in treatment technology brought about decreases in P loads in the 1980s and 1990s. Point-source discharges were compared to historical total phosphorus loads estimated in a whole-basin phosphorus mass balance to calculate the historical contribution of point sources, anthropogenic nonpoint sources, and natural or background sources. We estimated 1990s point source loads at 48 t P yr−1, which represents about 10% of the total phosphorus load (459 t P yr−1, flow-corrected to 412 t P yr−1) to the basin. Without further controls on nutrient inputs to the St. Croix River, annual flow-corrected P loads are projected to increase to 498 t P yr−1 by the 2020s with point source phosphorus loading contributions at 65 t P yr−1 or 13% of the total load. However, if we exclude background P loads to the St. Croix (166 t P yr−1), recent nutrient loads are primarily from anthropogenic nonpoint sources. Point sources also contribute over 19% of the current and future phosphorus load that can be attributed to human activities in the watershed. Interstate and federal efforts to decrease P loading to the St. Croix River by 20% will need to target both point and nonpoint sources. This is one of eight papers dedicated to the “Recent Environmental History of the Upper Mississippi River” published in this special issue of the Journal of Paleolimnology. D.R. Engstrom served as guest editor of the special issue.  相似文献   
40.
Information on post-fire sediment and nutrient redistribution is required to underpin post-fire catchment management decisions. Fallout radionuclide budgets (210Pbxs, 137Cs and 7Be) were derived to quantify soil redistribution and sediment yield in forested terrain following a moderately severe wildfire in a small (89 ha) water supply catchment in SE Australia. Application of these techniques in burnt terrain requires careful consideration of the partitioning of radionuclides between organic and mineral soil components. Beryllium-7 and 210Pbxs were shown to be closely associated with ash, litter and soil organic matter whereas 137Cs was more closely associated with subsurface coarse mineral soil. Comparison of the three tracer budgets indicated that the dominant sediment source areas were ridgetops and steep valley sideslopes, from which burnt surface material was conveyed to the stream network via pre-existing gullies. Erosion was predominantly driven by sheetwash, enhanced by soil water repellency, and modified by bioturbation which both supplies subsurface sediment and provides sinks for erosive overland flow. Footslope and riparian zones were not important sediment source areas. The estimated event-based (wildfire and subsequent rainfall) sediment yield is 58 ± 25 t km− 2, based on fallout 7Be measurements. The upper estimate of total particulate phosphorus yield (0.70 kg ha− 1) is more than 10 times that at equivalent unburnt sites. This illustrates that, soon after fire, burnt eucalypt forest can produce nutrient loads similar to those of agricultural catchments. The tracer budgets indicate that wildfire is an important control on sediment and phosphorus inputs to the stream network over the decadal timeframe and the pulsed nature of this release is an important concern for water quality management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号