首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1730篇
  免费   131篇
  国内免费   138篇
测绘学   32篇
大气科学   69篇
地球物理   251篇
地质学   770篇
海洋学   388篇
天文学   15篇
综合类   46篇
自然地理   428篇
  2024年   7篇
  2023年   17篇
  2022年   31篇
  2021年   39篇
  2020年   43篇
  2019年   73篇
  2018年   62篇
  2017年   67篇
  2016年   91篇
  2015年   40篇
  2014年   67篇
  2013年   319篇
  2012年   52篇
  2011年   64篇
  2010年   69篇
  2009年   72篇
  2008年   88篇
  2007年   95篇
  2006年   82篇
  2005年   74篇
  2004年   55篇
  2003年   48篇
  2002年   60篇
  2001年   47篇
  2000年   59篇
  1999年   45篇
  1998年   27篇
  1997年   22篇
  1996年   27篇
  1995年   24篇
  1994年   27篇
  1993年   15篇
  1992年   11篇
  1991年   13篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   6篇
  1986年   6篇
  1985年   13篇
  1984年   10篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   2篇
  1978年   2篇
排序方式: 共有1999条查询结果,搜索用时 15 毫秒
191.
A new species, Procretevania mitis sp. nov., is described from the Early Cretaceous of Yixian Formation at the Huangbanjigou, Beipiao City, western Liaoning, China. Based on new morphological data, a key of Procretevania Zhang and Zhang, 2000 is provided. Forewing venations, body and forewing lengths, localities and horizons of various genera of Evaniidae in amber and compression fossils are summarized for comparison. Evaniidae have a high degree of venational diversity, while more complex forewing venations for Lebanevania and Mesevania suggest that they may represent the stem group of the Evaniidae. High diversity of Evaniidae in the Early Cretaceous implies that Evaniidae might have radiated before the Early Cretaceous. Furthermore, comparison of body and forewing lengths of amber and fossil genera indicate that the amber specimens have relatively smaller size.  相似文献   
192.
合肥及其以东地区新构造运动特征   总被引:2,自引:0,他引:2  
通过对合肥及其以东地区第四纪地层发育特征、地貌特征、地震等特征分析,认为合肥至浮槎山西麓为相对下降区,位于江淮分水岭南缘的梁园一带为现代上升区,浮槎山东部至巢湖一带为相对上升区。新构造运动表现有四次活动。  相似文献   
193.
Cupressinocladus Seward is a fossil genus of conifers and conifer fossils with reproductive organs are very rare. In general, it is difficult to understand the natural affinities with other conifers. In this paper, a new species, Cupressinocladus guyangensis P.H. Jin et B.N. Sun sp. nov., is reported based on branches with immature female cones from the Lower Cretaceous Guyang Formation of the Guyang Basin in Inner Mongolia, northern China. The foliage shoots are decussate. Leaves are decussate, imbricate, scale-like, weakly dimorphic, and bear longitudinal glands on the abaxial view. Stomata complexes are haplocheilic, monocyclic, irregularly arranged, and spread along the leaf margin. Immature female cones are subglobose with 6–8 cone scales, and three subglobose ovules arranged in a row at the base of the cone scales. Moreover, we performed cluster analysis using a statistics and machine learning toolbox for 23 fossils and extant species based on 16 morphological characters. The result implies that the new species bears a close resemblance to the extant Cupressus funebris Endl. and might have nearest systematic affinities to it.  相似文献   
194.
长江中下游成矿带矿产勘查-科研工作回顾和展望   总被引:3,自引:5,他引:3  
常印佛  周涛发  范裕 《岩石学报》2017,33(11):3333-3352
长江中下游成矿带是我国勘查-研究程度相当高的成矿带之一,地质勘查和相关研究工作可以追溯到二十世纪初。本文简要对成矿带自二十世纪初至今的勘查-科研工作成果进行了概括性回顾和综述。中华人民共和国成立后成矿带勘查研究工作总体上可以分为三个阶段:(1)第一阶段:点上起步、由点到面;(2)第二阶段:区域展开、重点突破;(3)第三阶段:立体调查、深部找矿。近年来,长江中下游成矿带的地质找矿和科学研究均取得了重要进展,主要集中在以下几方面:(1)控矿构造格架(包括大地构造,后期还尝试引入了动力学背景的探讨);(2)成岩成矿作用的时代;(3)成矿系列(系统)及其演化;(4)成矿规律;(5)深部找矿。包括本专辑(代序)20余篇文章在内的近年来的找矿新发现、新突破以及对成矿的新认识,深化了成矿带成矿理论研究,指示成矿带特别是深部"第二找矿空间"具有很好的成矿潜力,同时也揭示了成矿带值得关注和仍有待进一步研究的科学问题。  相似文献   
195.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
196.
Structural, magnetic and gravity trends of the southern New England Orogen (SNEO) indicate four oroclinal structures, none conclusively confirmed paleomagnetically. Curved structures of the Tamworth Belt (TB)—a continental forearc exposed across six tectono-stratigraphic blocks with interlinked Carboniferous stratigraphies and extensive ignimbritic rocks known to retain primary magnetisations despite prevalent overprinting—are prospective to oroclinal testing through comparison of Carboniferous pole paths for individual blocks. Pole paths (a) have been established for the Rocky Creek and Werrie blocks (northwestern/western TB), (b) are described herein for the Rouchel Block (southwestern TB), and (c) are forthcoming for the Gresford and Myall blocks (southern/southeastern TB). The Rouchel path derives from detailed paleomagnetic, rock magnetic and magnetic fabric studies. Thermal, alternating field and liquid nitrogen demagnetisations show a low-temperature overprint, attributed to late Oligocene weathering, and high-temperature (HT) primary and overprint components in both magnetite and hematite carriers, showing slight, systematic, directional differences with hematite providing the better cleaned site poles. Seven primary mean-site poles of Tournaisian and mainly Visean age and three overprint poles show six positive fold tests, five at 95% or higher confidence levels. Two dispersed groupings of intermediate (IT) and HT overprint site poles of Permian and Permo-Triassic age are attributed to early and late phases in oroclinal evolution of the SNEO. HT and IT/HT overprint site poles of mid-Carboniferous age are attributed to Variscan Australia–Asia convergence. Individual pole paths for the Rocky Creek, Werrie and Rouchel blocks show no noticeable rotation between them, indicating primary curvature for the southwestern TB. Their integrated SNEO pole path establishes a reference frame for determining rotations of the southern and southeastern TB.  相似文献   
197.
张福良  季洪伟 《地质论评》2016,62(S1):143-144
当前我国正处经济增速减缓的新常态,供给侧结构性改革应运而生。我国乃至世界的矿业更是处于发展的严冬之季,产能严重过剩,大宗商品价格持续走低。在当前形势下,我们要用新常态眼光看待矿业未来发展之路,因地制宜,着力加强供给侧改革,刻不容缓。  相似文献   
198.
Seismic reflection and refraction data were collected west of New Zealand's South Island parallel to the Pacific–Australian Plate boundary. The obliquely convergent plate boundary is marked at the surface by the Alpine Fault, which juxtaposes continental crust of each plate. The data are used to study the crustal and uppermost mantle structure and provide a link between other seismic transects which cross the plate boundary. Arrival times of wide-angle reflected and refracted events from 13 recording stations are used to construct a 380-km long crustal velocity model. The model shows that, beneath a 2–4-km thick sedimentary veneer, the crust consists of two layers. The upper layer velocities increase from 5.4–5.9 km/s at the top of the layer to 6.3 km/s at the base of the layer. The base of the layer is mainly about 20 km deep but deepens to 25 km at its southern end. The lower layer velocities range from 6.3 to 7.1 km/s, and are commonly around 6.5 km/s at the top of the layer and 6.7 km/s at the base. Beneath the lower layer, the model has velocities of 8.2–8.5 km/s, typical of mantle material. The Mohorovicic discontinuity (Moho) therefore lies at the base of the second layer. It is at a depth of around 30 km but shallows over the south–central third of the profile to about 26 km, possibly associated with a southwest dipping detachment fault. The high, variable sub-Moho velocities of 8.2 km/s to 8.5 km/s are inferred to result from strong upper mantle anisotropy. Multichannel seismic reflection data cover about 220 km of the southern part of the modelled section. Beneath the well-layered Oligocene to recent sedimentary section, the crustal section is broadly divided into two zones, which correspond to the two layers of the velocity model. The upper layer (down to about 7–9 s two-way travel time) has few reflections. The lower layer (down to about 11 s two-way time) contains many strong, subparallel reflections. The base of this reflective zone is the Moho. Bi-vergent dipping reflective zones within this lower crustal layer are interpreted as interwedging structures common in areas of crustal shortening. These structures and the strong northeast dipping reflections beneath the Moho towards the north end of the (MCS) line are interpreted to be caused by Paleozoic north-dipping subduction and terrane collision at the margin of Gondwana. Deeper mantle reflections with variable dip are observed on the wide-angle gathers. Travel-time modelling of these events by ray-tracing through the established velocity model indicates depths of 50–110 km for these events. They show little coherence in dip and may be caused side-swipe from the adjacent crustal root under the Southern Alps or from the upper mantle density anomalies inferred from teleseismic data under the crustal root.  相似文献   
199.
The New Madrid seismic zone (NMSZ) is an intraplate right-lateral strike-slip and thrust fault system contained mostly within the Mississippi Alluvial Valley. The most recent earthquake sequence in the zone occurred in 1811–1812 and had estimated moment magnitudes of 7–8 (e.g., [Johnston, A.C., 1996. Seismic moment assessment of stable continental earthquakes, Part 3: 1811–1812 New Madrid, 1886 Charleston, and 1755 Lisbon. Geophysical Journal International 126, 314–344; Johnston, A.C., Schweig III, E.S, 1996. The enigma of the New Madrid earthquakes of 1811–1812. Annual Reviews of Earth and Planetary Sciences 24, 339–384; Hough, S.E., Armbruster, J.G., Seeber, L., Hough, J.F., 2000. On the modified Mercalli intensities and magnitudes of the New Madrid earthquakes. Journal of Geophysical Research 105 (B10), 23,839–23,864; Tuttle, M.P., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5, 361–380]). Four earlier prehistoric earthquakes or earthquake sequences have been dated A.D. 1450 ± 150, 900 ± 100, 300 ± 200, and 2350 B.C. ± 200 years using paleoliquefaction features, particularly those associated with native American artifacts, and in some cases surface deformation ([Craven, J. A. 1995. Paleoseismology study in the New Madrid seismic zone using geological and archeological features to constrain ages of liquefaction deposits. M.S thesis, University of Memphis, Memphis, TN, U.S.A.; Tuttle, M.P., Lafferty III, R.H., Guccione, M.J., Schweig III, E.S., Lopinot, N., Cande, R., Dyer-Williams, K., Haynes, M., 1996. Use of archaeology to date liquefaction features and seismic events in the New Madrid seismic zone, central United States. Geoarchaeology 11, 451–480; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43(2002), 313–349; Tuttle, M.P., Schweig, E.S., Sims, J.D., Lafferty, R.H., Wolf, L.W., Haynes, M.L., 2002. The earthquake potential of the New Madrid seismic zone, Bulletin of the Seismological Society of America, v 92, n. 6, p. 2080–2089; Tuttle, M.P., Schweig III, E.S., Campbell, J., Thomas, P.M., Sims, J.D., Lafferty III, R.H., 2005. Evidence for New Madrid earthquakes in A.D. 300 and 2350 B.C. Seismological Research Letters 76, 489–501]). The two most recent prehistoric and the 2350 B.C. events were probably also earthquake sequences with approximately the same magnitude as the historic sequence.Surface deformation (faulting and folding) in an alluvial setting provides many examples of stream response to gradient changes that can also be used to date past earthquake events. Stream responses include changes in channel morphology, deviations in the channel path from the regional gradient, changes in the direction of flow, anomalous longitudinal profiles, and aggradation or incision of the channel ([Merritts, D., Hesterberg, T, 1994. Stream networks and long-term surface uplift in the New Madrid seismic zone. Science 265, 1081–1084.; Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). Uplift or depression of the floodplain affects the frequency of flooding and thus the thickness and style of vertical accretion or drowning of a meander scar to form a lake. Vegetation may experience trauma, mortality, and in some cases growth enhancement due to ground failure during the earthquake and hydrologic changes after the earthquake ([VanArdale, R.B., Stahle, D.W., Cleaveland, M.K., Guccione, M.J., 1998. Earthquake signals in tree-ring data from the New Madrid seismic zone and implications for paleoseismicity. Geology 26, 515–518]). Identification and dating these physical and biologic responses allows source areas to be identified and seismic events to be dated.Seven fault segments are recognized by microseismicity and geomorphology. Surface faulting has been recognized at three of these segments, Reelfoot fault, New Madrid North fault, and Bootheel fault. The Reelfoot fault is a compressive stepover along the strike-slip fault and has up to 11 m of surface relief ([Carlson, S.D., 2000. Formation and geomorphic history of Reelfoot Lake: insight into the New Madrid seismic zone. M.S. Thesis, University of Arkansas, Fayetteville, Arkansas, U.S.A]) deforming abandoned and active Mississippi River channels ([Guccione, M.J., Mueller, K., Champion, J., Shepherd, S., Odhiambo, B., 2002b. Stream response to repeated co-seismic folding, Tiptonville dome, western Tennessee. Geomorphology 43 (2002), 313–349]). The New Madrid North fault apparently has only strike-slip motion and is recognized by modern microseismicity, geomorphic anomalies, and sand cataclasis ([Baldwin, J.N., Barron A.D., Kelson, K.I., Harris, J.B., Cashman, S., 2002. Preliminary paleoseismic and geophysical investigation of the North Farrenburg lineament: primary tectonic deformation associated with the New Madrid North Fault?. Seismological Research Letters 73, 393–413]). The Bootheel fault, which is not identified by the modern microseismicity, is associated with extensive liquefaction and offset channels ([Guccione, M.J., Marple, R., Autin, W.J., 2005, Evidence for Holocene displacements on the Bootheel fault (lineament) in southeastern Missouri: Seismotectonic implications for the New Madrid region. Geological Society of America Bulletin 117, 319–333]). The fault has dominantly strike-slip motion but also has a vertical component of slip. Other recognized surface deformation includes relatively low-relief folding at Big Lake/Manila high ([Guccione, M.J., VanArdale, R.B., Hehr, L.H., 2000. Origin and age of the Manila high and associated Big Lake “Sunklands”, New Madrid seismic zone, northeastern Arkansas. Geological Society of America Bulletin 112, 579–590]) and Lake St. Francis/Marked Tree high ([Guccione, M.J., VanArsdale, R.B., 1995. Origin and age of the St. Francis Sunklands using drainage patterns and sedimentology. Final report submitted to the U. S. Geological Survey, Award Number 1434-93-G-2354, Washington D.C.]), both along the subsurface Blytheville arch. Deformation at each of the fault segments does not occur during each earthquake event, indicating that earthquake sources have varied throughout the Holocene.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号