首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   32篇
  国内免费   4篇
测绘学   5篇
大气科学   7篇
地球物理   68篇
地质学   64篇
天文学   2篇
综合类   31篇
自然地理   31篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   8篇
  2019年   9篇
  2018年   9篇
  2017年   23篇
  2016年   23篇
  2015年   31篇
  2014年   3篇
  2013年   14篇
  2012年   4篇
  2011年   4篇
  2010年   2篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   5篇
  2003年   7篇
  2002年   1篇
  2001年   2篇
  2000年   9篇
  1999年   4篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1989年   1篇
  1988年   1篇
排序方式: 共有208条查询结果,搜索用时 31 毫秒
191.
Late Pleistocene and modern ice extents in central Nepal are compared to estimate equilibrium line altitude (ELA) depressions. New techniques are used for determining the former extent of glaciers based on quantitative, objective geomorphic analyses of a 90-m resolution digital elevation model (DEM). For every link of the drainage network, valley form is classified as glacial or fluvial based on cross-valley shape and slope statistics. Down-valley transitions from glacial to fluvial form indicate the former limits of glaciation in each valley. Landsat Multispectral Scanner imagery for the same region is used to map current glacier extents. For both full-glacial and modern cases, ELAs are computed from the glacier limits using the DEM and a toe-to-headwall altitude ratio of 0.5. Computed ELA depressions range from 100–900 m with a modal value of 650 m and a mean of 500 m, values consistent with previously published estimates for the central Himalaya but markedly smaller than estimates for many other regions. We suggest that this reflects reduced precipitation, rather than a small temperature depression, consistent with other evidence for a weaker monsoon under full-glacial conditions.  相似文献   
192.
A toppled structure with sliding in the Siwalik Hills, midwestern Nepal   总被引:1,自引:0,他引:1  
Not only the high mountainous regions but also the southern hilly regions of Nepal frequently suffer from landslides and debris flows. An interesting toppled structure with sliding was distinguished on an excavated slope facing the major highway in one such region, the Siwalik Hills. These hills are mostly composed of alternating beds of sandstones and mudstones of the Siwalik Group. A distinct contrast in the direction of dip of the strata was recognized on the excavated slope; the strata in the upper portion of the slope dipped southward, whereas those of the foot slope dipped northward. This indicated that toppling of strata had occurred. The northward direction of toppling and the angle and axis of rotation of the block were determined by examining the distribution of the attitudes of the strata.

Steeply dipping strata influenced by southward thrusting along the major tectonic line, contrasting rigidity between sandstone and mudstone, and rapid dissection by a river were the major causes of the toppling. The bottom surface of the toppled part dipped gently not only northward but also partially westward, showing that the toppled block slid westward after toppling. Evidence for tension cracking and scarplets on the top slope indicated that the block was still actively sliding.

Because steeply dipping sandstone and mudstone strata are widely distributed in the Siwalik Hills, similar structures are inferred to exist in many places. Therefore, the investigation of such slope structures is important, and their instability must be evaluated before road construction and excavation projects are carried out in Nepal.  相似文献   

193.
ABSTRACT The Main Central Thrust (MCT) south of Mt Everest in eastern Nepal is a 3 to 5km thick shear zone separating chlorite-bearing schist in the lower plate from sillimanite-bearing migmatitic gneiss in the overlying Tibetan Slab. The metamorphic grade increases through the MCT zone toward structurally higher levels. Previous workers have suggested that either post- or synmetamorphic thrust movement has caused this inversion of metamorphic isograds. In an effort to quantify the increase in grade and to constrain proposed structural relations between metamorphism and slip on the fault, four well-calibrated thermobarometers were applied to pelitic samples collected along two cross-strike transects through the MCT zone and Tibetan Slab. Results show an increase in apparent temperature up-section in the MCT zone from 778 K to 990 K and a decrease in temperature to ∼850 K in the lower Tibetan Slab, which is consistent with synmetamorphic thrust movement. A trend in calculated pressures across this section is less well-defined but, on average, decreases up-section with a gradient of ∼28MPa/km, resembling a lithostatic gradient. Pressure-temperature paths for zoned garnets from samples within the MCT zone, modelled using the Gibbs' Method, show a significant decrease in temperature and a slight decrease in pressure from core to rim, which might be expected for upper plate rocks during synmetamorphic thrust movement. Samples from the uppermost Tibetan Slab yield higher temperatures and pressures than those from the lower Tibetan Slab, which may be evidence for later‘resetting’ of thermobarometers by intrusion of the large amounts of leucogranite at that structural level.  相似文献   
194.
This study verifies the applicability of EPIC model for an erosion plot (61 .2 m~2) and an uplandterraced watershed (72 ha) using a total of 94 rainfall events over a study period of two years. Inorder to analyze the effect of storm size on runoff and soil loss processes, rainfall events aredivided into three groups: small (<25mm), moderate (25--50mm) and large (>50mm). Resultsindicate that the model could predict reasonably well the runoff and soil loss from the erosion plotand the watershed for the moderate and large rainfall events. However, the runoff and soil lossprediction for the small rainfall events is found to be poor. On annual basis, both surface runoff andsoil loss predictions match well the observations. In ligh of the importance of the moderate andlarge rainfall events in producing most of the annual runoff and soil loss in the study area, the EPICmodel is applied to assess the impacts of erosion on agricultural productivity and to evaluatemanagement practices to protect watersheds in the  相似文献   
195.
Landslide hazard mapping is a fundamental tool for disaster management activities in mountainous terrains. The main purpose of this study is to evaluate the predictive power of weights-of-evidence modelling in landslide hazard assessment in the Lesser Himalaya of Nepal. The modelling was performed within a geographical information system (GIS), to derive a landslide hazard map of the south-western marginal hills of the Kathmandu Valley. Thematic maps representing various factors (e.g., slope, aspect, relief, flow accumulation, distance to drainage, soil depth, engineering soil type, landuse, geology, distance to road and extreme one-day rainfall) that are related to landslide activity were generated, using field data and GIS techniques, at a scale of 1:10,000. Landslide events of the 1970s, 1980s, and 1990s were used to assess the Bayesian probability of landslides in each cell unit with respect to the causative factors. To assess the accuracy of the resulting landslide hazard map, it was correlated with a map of landslides triggered by the 2002 extreme rainfall events. The accuracy of the map was evaluated by various techniques, including the area under the curve, success rate and prediction rate. The resulting landslide hazard value calculated from the old landslide data showed a prediction accuracy of > 80%. The analysis suggests that geomorphological and human-related factors play significant roles in determining the probability value, while geological factors play only minor roles. Finally, after the rectification of the landslide hazard values of the new landslides using those of the old landslides, a landslide hazard map with > 88% prediction accuracy was prepared. The methodology appears to have extensive applicability to the Lesser Himalaya of Nepal, with the limitation that the model's performance is contingent on the availability of data from past landslides.  相似文献   
196.
PALEOCLIMATIC CHANGES DURING THE LAST 2.5Ma RECORDED IN THE KATHMANDU BASIN, CENTRAL NEPAL HIMALAYAS  相似文献   
197.
VALLEY SLOPE DEFORMATION BY INTERACTION OF MASS ROCK CREEP,TALUS CREEP AND RAPID LANDSLIDES ALONG THE KALI GANDAKI RIVER IN THE HIMALAYAS OF WESTERN NEPAL1 AmatyaKM ,InavaliBM .GeologicalMapofNepalwithExplanatoryNote[M ].DepartmentofMinesandGeology(DMG) ,Kathmandu ,Nepal,1994 2 ChigiraM .Long termGravitationalDeformationofRocksbyMassRockCreep[J].EngineeringGeology ,1992 ,32 :15 7~ 184. 3 SELBYMJ .HillslopeMate…  相似文献   
198.
Underutilized plant species help to alleviate common food insufficiencies by providing alternative food supply. They also complement primary health care, furnishing raw materials where the cultivation of staple cereal crops is least feasible and health care is pursued indigenously. Research and promotion of extraction, utilization, and conservation of underutilized species lead to exploration of new staple crops and motivate people to consume in a sustainable manner. The present study describes the current status, uses, and management of underutilized plant species in Far West Nepal. The relative importance of 49 underutilized plant species was computed employing a Relative Importance (RI) technique. The use-values assigned to the species fall into six use-categories: beverage, fodder, food & edible, medicinal, vegetable and veterinary. A total of 22 species appeared in multiple use-categories, while the rest were characterized by a single use-category. Based on relative importance and frequency, Ficus semicordata, Debregesia longifolia, Girardinea diversifolia, Hydrocotyle nepalensis, Garuga pinnata, Aloe vera and Pyrus pashia offer the most potential for future. Underutilized plants proved important to folk medicine and food. These species persist because they remain useful to local people as means of subsistence, production, and primary health care. The findings are important so far as they point up the role of underutilized plants in national food security policy and health care, spelling out their potentialities and cross cutting relationships.  相似文献   
199.
We studied distribution and site conditions of epiphytic orchids in a gradient of human interference in Kathmandu valley, central Nepal. The aim was to understand the recent distribution pattern of epiphytic orchids, with respect to (i) the micro-site conditions and (ii) the type and intensity of land use. The occurrence of epiphytic orchids was recorded for a grid with 1.5 km cell size. The cells represent different types and intensities of human impact. Site factors such as bark rugosity, bark pH, diameter at breast height (dbh; 1.3 m) of host trees, exposure to wind and sunlight intensity were recorded. With regard to the species richness and abundance of epiphytic orchids, we compared different human impact categories from very strong human impact (settlement area) to very low human impact (national park). Remote sensing was used for a supervised classification of land cover. Ficus religiosa turned out to be the most important host species for orchids in urban areas, while Schima wallichii and Alnus nepalensis significantly host orchids in the other categories. Both species richness and abundance of epiphytic orchids were significantly higher under very low human impact (forest in national park) and also some remaining patches of primary forest than the other regions. Micro-climate is crucial for orchid populations. Host bark pH, bark rugosity, sunlight intensity and host exposure were significantly different for all human impact categories in order to harbour epiphytic orchid species. Habitats with a mixture of mature trees are suitable and essential for the conservation of viable populations of epiphytic orchids in settled areas. The study reveals that to improve the population size of orchids it is essential for future urban forestry to: (i) Protect old trees as carriers of existing epiphytic orchid diversity, (ii) protect medium old trees to ensure that they may become old trees, (iii) plant new host trees for the future, (iv) plant in groups instead of single isolate trees. Trees should especially be planted in areas where orchids still exist to provide more trees for orchid population enlargement (e.g. along riparian system). Native species should be favoured; the pool of such native host species is wide.  相似文献   
200.
2015年4月25日尼泊尔爆发MW7.9地震,继而引发5月12日MW7.3级余震,GPS、InSAR监测到震源区及周边大范围同震形变.本文以国内外的GPS和InSAR同震形变为约束,考虑喜马拉雅断裂带岩石圈垂向分层和横向差异的影响,反演主喜马拉雅逆冲断裂在这次主震和余震中破裂面形状和滑动分布.结果显示,主震从USGS确定的震中位置向东偏南延伸100km以上,破裂地面迹线与主前缘逆冲断裂迹线基本一致.破裂面倾角约7°~11°,大部分破裂集中在深度8~20km,同余震分布深度一致.主震最大滑动量约6.0~6.6m,位于14km深处.余震破裂集中在震中附近30km范围内,填补了主震东部破裂空区,最大滑动约3.6~4.6 m,位于13km深.深度20km以下基本没有破裂.地壳介质不均匀性对破裂滑动分布的影响较大,介质不均匀模型的观测值不符值比各向同性弹性半空间模型降低10%以上.本文地震破裂模型特征与地震反射剖面、以及根据震间期大地测量数据反演的喜马拉雅深部蠕滑剖面极其相似.跨喜马拉雅断裂剖面的震间形变量与地震破裂滑移量直接相关.以此推算,尼泊尔中部大震原地复发周期在300年以上.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号