首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2236篇
  免费   592篇
  国内免费   229篇
测绘学   19篇
大气科学   20篇
地球物理   1279篇
地质学   1369篇
海洋学   141篇
天文学   2篇
综合类   50篇
自然地理   177篇
  2024年   2篇
  2023年   11篇
  2022年   46篇
  2021年   55篇
  2020年   69篇
  2019年   104篇
  2018年   99篇
  2017年   109篇
  2016年   130篇
  2015年   102篇
  2014年   172篇
  2013年   191篇
  2012年   124篇
  2011年   146篇
  2010年   74篇
  2009年   160篇
  2008年   157篇
  2007年   128篇
  2006年   135篇
  2005年   95篇
  2004年   95篇
  2003年   90篇
  2002年   74篇
  2001年   69篇
  2000年   74篇
  1999年   55篇
  1998年   52篇
  1997年   47篇
  1996年   58篇
  1995年   71篇
  1994年   61篇
  1993年   49篇
  1992年   26篇
  1991年   25篇
  1990年   19篇
  1989年   12篇
  1988年   18篇
  1987年   9篇
  1986年   7篇
  1984年   10篇
  1983年   6篇
  1981年   1篇
  1979年   12篇
  1978年   5篇
  1977年   2篇
  1954年   1篇
排序方式: 共有3057条查询结果,搜索用时 218 毫秒
41.
42.
43.
44.
Twenty-nine water samples were collected from different river channels of the Pearl River Delta Economic Zone, China. An inductively coupled plasma-mass spectromonitor (ICP-MS) was used to measure concentrations of the trace elements in these samples. The results suggest that the average concentrations of rare earth elements in river water show an increasing trend from the West River, the North River, the rivers of the Pearl River Delta, and the Shenzhen River to the East River. Relatively high concentrations of heavy metals appear in the East River, the rivers of the Pearl River Delta and the Shenzhen River, while the West River and the North River have relatively low heavy metal concentrations. Trace element concentrations in samples collected near urban or industrial areas are much higher than those of samples collected from distant areas, away from urban and industrial areas. After natural conditions, human activities have significant influence on the trace element concentrations in river water. This trace element concentration’s spatial distribution in the river water from the Pearl River Delta Economic Zone is actually an integrated effect of natural conditions and human activity.  相似文献   
45.
The power-law exponent (n) in the equation: D=cL n , with D = maximum displacement and L = fault length, would be affected by deviations of fault trace length. (1) Assuming n=1, numerical simulations on the effect of sampling and linkage on fault length and length–displacement relationship are done in this paper. The results show that: (a) uniform relative deviations, which means all faults within a dataset have the same relative deviation, do not affect the value of n; (b) deviations of the fault length due to unresolved fault tip decrease the values of n and the deviations of n increase with the increasing length deviations; (c) fault linkage and observed dimensions either increase or decrease the value of n depending on the distribution of deviations within a dataset; (d) mixed deviations of the fault lengths are either negative or positive and cause the values of n to either decrease or increase; (e) a dataset combined from two or more datasets with different values of c and orders of magnitude also cause the values of n to deviate. (2) Data including 19 datasets and spanning more than eight orders of fault length magnitudes (10−2–105 m) collected from the published literature indicate that the values of n range from 0.55 to 1.5, the average value being 1.0813, and the peak value of n d (double regression) is 1.0–1.1. Based on above results from the simulations and published data, we propose that the relationship between the maximum displacement and fault length in a single tectonic environment with uniform mechanical properties is linear, and the value of n deviated from 1 is mainly caused by the sampling and linkage effects.  相似文献   
46.
新疆卡拉麦里金矿带成矿规律及找矿预测   总被引:2,自引:0,他引:2  
新疆卡拉麦里成矿带内地层较全、构造发育、岩浆活动频繁,志留系、泥盆系和石炭系在带内广泛发育,为本区主要含金地层.卡拉麦里深断裂严格控制区内侵入岩、次一级构造和矿产分布,构成岩浆侵入的主要通道,与此有关的次一级断层和裂隙则构成良好的赋存空间.卡拉麦里深大断裂纵贯全区,金成矿地质条件优越,沿走向Au异常、金矿床(点)成群成带分布,最后确定了7个金找矿远景区.  相似文献   
47.
王铨宇  杨树元 《云南地质》2005,24(3):298-302
异常形态、分布严格受推覆断裂控制,范围大、浓集中心明显,浓度变化及因子载荷表明。区内找Ag、Pb有利,而Sb又为其最佳指示元素。  相似文献   
48.
滇西水成铀矿勘探综合测井成果   总被引:2,自引:0,他引:2  
罗志明  张世涛 《云南地质》2005,24(4):386-394
滇西龙川江盆地发现水成铀矿。本文借助地球物理综合测井技术,对龙川江盆地水成铀矿的成矿规律作有益分析和探讨。重点论述滇西水成铀成矿的成矿(沉积)环境及其成矿物征。  相似文献   
49.
Questions persist concerning the earthquake potential of the populous and industrial Lake Ontario (Canada–USA) area. Pertinent to those questions is whether the major fault zone that extends along the St. Lawrence River valley, herein named the St. Lawrence fault zone, continues upstream along the St. Lawrence River valley at least as far as Lake Ontario or terminates near Cornwall (Ontario, Canada)–Massena (NY, USA). New geological studies uncovered paleotectonic bedrock faults that are parallel to, and lie within, the projection of that northeast-oriented fault zone between Cornwall and northeastern Lake Ontario, suggesting that the fault zone continues into Lake Ontario. The aforementioned bedrock faults range from meters to tens of kilometers in length and display kinematically incompatible displacements, implying that the fault zone was periodically reactivated in the study area. Beneath Lake Ontario the Hamilton–Presqu'ile fault lines up with the St. Lawrence fault zone and projects to the southwest where it coincides with the Dundas Valley (Ontario, Canada). The Dundas Valley extends landward from beneath the western end of the lake and is marked by a vertical stratigraphic displacement across its width. The alignment of the Hamilton–Presqu'ile fault with the St. Lawrence fault zone strongly suggests that the latter crosses the entire length of Lake Ontario and continues along the Dundas Valley.The Rochester Basin, an east–northeast-trending linear trough in the southeastern corner of Lake Ontario, lies along the southern part of the St. Lawrence fault zone. Submarine dives in May 1997 revealed inclined layers of glaciolacustrine clay along two different scarps within the basin. The inclined layers strike parallel to the long dimension of the basin, and dip about 20° to the north–northwest suggesting that they are the result of rigid-body rotation consequent upon post-glacial faulting. Those post-glacial faults are growth faults as demonstrated by the consistently greater thickness, unit-by-unit, of unconsolidated sediments on the downthrown (northwest) side of the faults relative to their counterparts on the upthrown (southeast) side. Underneath the western part of Lake Ontario is a monoclinal warp that displaces the glacial and post-glacial sediments, and the underlying bedrock–sediment interface. Because of the post-glacial growth faults and the monoclinal warp the St. Lawrence fault zone is inferred to be tectonically active beneath Lake Ontario. Furthermore, within the lake it crosses at least five major faults and fault zones and coexists with other neotectonic structures. Those attributes, combined with the large earthquakes associated with the St. Lawrence fault zone well to the northeast of Lake Ontario, suggest that the seismic risk in the area surrounding and including Lake Ontario is likely much greater than previously believed.  相似文献   
50.
The Late Cretaceous–Cenozoic evolution of the eastern North Sea region is investigated by 3D thermo-mechanical modelling. The model quantifies the integrated effects on basin evolution of large-scale lithospheric processes, rheology, strength heterogeneities, tectonics, eustasy, sedimentation and erosion.

The evolution of the area is influenced by a number of factors: (1) thermal subsidence centred in the central North Sea providing accommodation space for thick sediment deposits; (2) 250-m eustatic fall from the Late Cretaceous to present, which causes exhumation of the North Sea Basin margins; (3) varying sediment supply; (4) isostatic adjustments following erosion and sedimentation; (5) Late Cretaceous–early Cenozoic Alpine compressional phases causing tectonic inversion of the Sorgenfrei–Tornquist Zone (STZ) and other weak zones.

The stress field and the lateral variations in lithospheric strength control lithospheric deformation under compression. The lithosphere is relatively weak in areas where Moho is deep and the upper mantle warm and weak. In these areas the lithosphere is thickened during compression producing surface uplift and erosion (e.g., at the Ringkøbing–Fyn High and in the southern part of Sweden). Observed late Cretaceous–early Cenozoic shallow water depths at the Ringkøbing–Fyn High as well as Cenozoic surface uplift in southern Sweden (the South Swedish Dome (SSD)) are explained by this mechanism.

The STZ is a prominent crustal structural weakness zone. Under compression, this zone is inverted and its surface uplifted and eroded. Contemporaneously, marginal depositional troughs develop. Post-compressional relaxation causes a regional uplift of this zone.

The model predicts sediment distributions and paleo-water depths in accordance with observations. Sediment truncation and exhumation at the North Sea Basin margins are explained by fall in global sea level, isostatic adjustments to exhumation, and uplift of the inverted STZ. This underlines the importance of the mechanisms dealt with in this paper for the evolution of intra-cratonic sedimentary basins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号