首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   1篇
大气科学   1篇
地球物理   6篇
地质学   1篇
海洋学   3篇
综合类   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2011年   2篇
  2008年   2篇
  2007年   2篇
  2005年   1篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
主要通过工程实例结合传染病医院特别是烈性传染病医院的设计特点,探讨给水输送的防回流污染、排水输送的防渗漏污染、排水通气管的防大气污染等问题以及解决问题所采取的相应措施,强调重视给水排水专业防止二次污染设计是确保传染病医院设计的重要性。  相似文献   
12.
  总被引:1,自引:0,他引:1  
Emerging infectious diseases continue to place a strain on the welfare of the population by decreasing the population’s general health and increasing the burden on public health infrastructure. This paper addresses these issues through the development of a computational framework for modeling and simulating infectious disease outbreaks in a specific geographic region facilitating the quantification of public health policy decisions. Effectively modeling and simulating past epidemics to project current or future disease outbreaks will lead to improved control and intervention policies and disaster preparedness. In this paper, we introduce a computational framework that brings together spatio–temporal geography and population demographics with specific disease pathology in a novel simulation paradigm termed, global stochastic field simulation (GSFS). The primary aim of this simulation paradigm is to facilitate intelligent what-if-analysis in the event of health crisis, such as an influenza pandemic. The dynamics of any epidemic are intrinsically related to a region’s spatio–temporal characteristics and demographic composition and as such, must be considered when developing infectious disease control and intervention strategies. Similarly, comparison of past and current epidemics must include demographic changes into any effective public health policy for control and intervention strategies. GSFS is a hybrid approach to modeling, implicitly combining agent-based modeling with the cellular automata paradigm. Specifically, GSFS is a computational framework that will facilitate the effective identification of risk groups in the population and determine adequate points of control, leading to more effective surveillance and control of infectious diseases epidemics. The analysis of past disease outbreaks in a given population and the projection of current or future epidemics constitutes a significant challenge to Public Health. The corresponding design of computational models and the simulation that facilitates epidemiologists’ understanding of the manifestation of diseases represents a challenge to computer and mathematical sciences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号