首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   391篇
  免费   49篇
  国内免费   32篇
测绘学   4篇
大气科学   16篇
地球物理   58篇
地质学   270篇
海洋学   21篇
天文学   6篇
综合类   7篇
自然地理   90篇
  2024年   1篇
  2023年   1篇
  2022年   7篇
  2021年   8篇
  2020年   9篇
  2019年   19篇
  2018年   6篇
  2017年   19篇
  2016年   13篇
  2015年   16篇
  2014年   19篇
  2013年   22篇
  2012年   10篇
  2011年   23篇
  2010年   22篇
  2009年   27篇
  2008年   47篇
  2007年   30篇
  2006年   33篇
  2005年   30篇
  2004年   14篇
  2003年   8篇
  2002年   12篇
  2001年   10篇
  2000年   8篇
  1999年   7篇
  1998年   5篇
  1997年   4篇
  1996年   1篇
  1995年   5篇
  1994年   7篇
  1993年   2篇
  1992年   5篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   3篇
  1987年   4篇
  1986年   1篇
  1983年   1篇
排序方式: 共有472条查询结果,搜索用时 31 毫秒
161.
冰川冰内及冰下水系研究综述   总被引:1,自引:0,他引:1  
冰内及冰下水系的形成与演化具有时空变化性,对冰川汇水储水及径流过程产生影响,与之紧密联系的冰下水文过程(水力状况)与冰川运动、冰川侵蚀及冰川洪水形成等过程息息相关。冰内及冰下水系空间结构和形态复杂,且不同于一般喀斯特水文系统,具有明显的季节变化性,其空间分布和水力状况会因外界水体输入(降水和冰雪融水)的变化而改变。冰内及冰下水系的变化通过影响汇流对冰川融水的径流过程产生影响,冰川区一些溃决洪水事件的发生与冰内及冰下蓄水的突然释放有很大关系。冰川蓄排水还通过改变冰下水力条件来影响冰川运动,反之冰川运动不仅影响蓄排水过程的转换效率,且通过改变冰川消融强度(冰体向下游消融区输送速率的变化)影响冰川排水系统的空间分布范围。在气候变暖及冰川变化的背景下,研究冰内冰下水系演化的时空特征及其影响具有重要科学意义。综述了目前国内外针对冰川冰内及冰下水系相关研究的进展及主要成果,并对该领域的研究前景进行了展望。  相似文献   
162.
晚冰期月亮湖炭屑记录反映的古气候演化   总被引:1,自引:0,他引:1       下载免费PDF全文
伍婧  刘强 《地质科学》2013,48(3):860-869
位于大兴安岭中段的月亮湖地处季风/非季风影响过渡地带,其沉积岩心下部886~546 cm的炭屑记录揭示了末次冰期晚期到全新世早期(20.9~10.8 cal.ka B.P.)的古气候演化历史,反映了东亚季风对研究区气候的影响。研究区炭屑浓度的变化主要由可供燃烧的生物量决定,生长在气候温暖时期的森林草原能够提供更多可供燃烧的生物量。在同一植被类型的条件下,气候寒冷湿润时炭屑浓度低,气候温暖干旱时炭屑浓度高。20.9~18.0 cal.ka B.P.炭屑浓度较低, 气候寒冷偏干,18.0~15.3 cal.ka B.P.炭屑浓度最低,气候寒冷湿润,15.3~14.4 cal.ka B.P.炭屑浓度增高,气候开始向温暖的方向发展,14.4~11.8 cal.ka B.P.炭屑浓度快速变化,气候也经历了一系列的快速变化,11.8~10.8 cal.ka B.P.炭屑浓度总体较高,气候温暖湿润。<50 μm的炭屑浓度指示了区域火演化的历史, >50 μm的炭屑则反映了当地野火发生的状况。  相似文献   
163.
By comparison with the Northern Hemisphere, there is a paucity of high-resolution, continuous records extending into the Last Glacial Maximum from the Southern Hemisphere. With specific reference to coastal eastern Australia, there are long records of paleoclimatic and paleoenvironmental variability available from the tropical north and temperate south. However, there are significant spatial gaps between such records: in particular, until relatively recently, little attention had been paid to the subtropics. This review paper summarises understanding of regional paleoenvironmental and paleoclimatic variability in coastal eastern Australia during the termination of the Last Glacial Stage, with the aim of highlighting gaps in the current state of knowledge. Recommendations for future research are prioritised to answer knowledge gaps in understanding climate variability in eastern Australia between ca 33–18 kyr BP.  相似文献   
164.
165.
冰湖溃决灾害是青藏高原地区主要的灾害之一。详细了解冰湖的面积和水量变化及其原因, 有助于更准确地确定其溃决的可能性和产生破坏的程度和范围。米堆冰湖为一个典型的冰碛物阻塞冰湖, 1988 年7 月15 日曾发生溃决。本研究利用1980 年1:5 万地形图和DEM、1988 年TM影像、2001 年IKONOS影像以及2001、2007、2009、2010 年ALOS影像, 提取冰湖溃决前后的面积变化, 结合野外实地测得的冰湖水深, 获得冰湖不同时期的水量及其变化。同时, 利用自动水位计, 监测湖泊相对水深的变化及其原因。结果显示, 米堆溃决前面积达到64×104 m2, 水量为699×104 m3, 溃决使得601.83×104 m3的水量溃出, 水位下降了17.18 m, 但溃决口并未达到冰湖最低处, 溃决后仍有97.17×104 m3的水量。近年来, 气温升高融水增加使得冰湖面积和水量不断增加, 按照目前的水量增加速率, 冰湖再次发生溃决的可能性较小, 而在由于其他原因使得冰湖发生堵塞或大量外来物质(冰川断裂、滑坡等)填充进冰湖时, 可能导致冰湖水位急剧上升, 再次发生溃决。  相似文献   
166.
Novaya Zemlya was covered by the eastern part of the Barents–Kara ice sheet during the glacial maximum of marine isotope stage 2 (MIS 2). We obtained 14C ages on 37 samples of mollusc shells from various sites on the islands. Most samples yielded ages in the range of 48–26 14C Ky. Such old samples are sensitive to contamination by young 14C, and therefore their reliability was assessed using replicate analyses and amino acid geochronology. The extent of aspartic acid racemization (Asp D/L) indicates that many of the 14C ages are correct, whereas some are minimum ages only. The results indicate that a substantial part of Novaya Zemlya was ice-free about 35–27 14C Kya, and probably even earlier. Corresponding shorelines up to >140 m a.s.l. indicate a large Barents–Kara ice sheet during early MIS 3. These results are consistent with findings from Svalbard and northern Russia: in both places a large MIS 4/3 Barents–Kara ice sheet is postulated to have retreated about 50 Kya, followed by an ice-free interstadial that lasted until up to ca. 25 Kya. The duration of the MIS 2 glaciation in Novaya Zemlya was calculated by applying the D/L values to a kinetic equation for Asp racemization. This indicates that the islands were ice covered for less than 3000 years if the basal temperature was 0oC, and for less than 10 000 years if it was −5oC.  相似文献   
167.
Randall J. Schaetzl   《Geomorphology》2008,102(3-4):287-296
This paper presents textural, geochemical, mineralogical, soils, and geomorphic data on the sediments of the Grayling Fingers region of northern Lower Michigan. The Fingers are mainly comprised of glaciofluvial sediment, capped by sandy till. The focus of this research is a thin silty cap that overlies the till and outwash; data presented here suggest that it is local-source loess, derived from the Port Huron outwash plain and its down-river extension, the Mainstee River valley. The silt is geochemically and texturally unlike the glacial sediments that underlie it and is located only on the flattest parts of the Finger uplands and in the bottoms of upland, dry kettles. On sloping sites, the silty cap is absent. The silt was probably deposited on the Fingers during the Port Huron meltwater event; a loess deposit roughly 90 km down the Manistee River valley has a comparable origin. Data suggest that the loess was only able to persist on upland surfaces that were either closed depressions (currently, dry kettles) or flat because of erosion during and after loess deposition. Deep, low-order tributary gullies (almost ubiquitous on Finger sideslopes) could only have formed by runoff, and soil data from them confirm that the end of gully formation (and hence, the end of runoff) was contemporaneous with the stabilization of the outwash surfaces in the lowlands. Therefore, runoff from the Finger uplands during the loess depositional event is the likely reason for the absence of loess at sites in the Fingers. Because of the sandy nature and high permeability of the Fingers' sediments, runoff on this scale could only have occurred under frozen ground conditions. Frozen ground and windy conditions in the Fingers at the time of the Port Huron advance is likely because the area would have been surrounded by ice on roughly three sides. This research (1) shows that outwash plains and meltwater streams of only medium size can be significant loess sources and (2) is the first to present evidence for frozen ground conditions in this part of the upper Midwest.  相似文献   
168.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   
169.
A suite of geomorphological and sedimentological features in the catchment of the upper Yenisei River in the Sayan mountains of southern Siberia testifies to the occurrence of cataclysmic floods that flowed down the river. Evidence of large-scale high-energy flood events includes: 1) gravel dunes, up to a few meters high and spaced 50 to 80 m apart, in the Kyzyl Basin 2) landforms such as hanging valleys and paleochannels and 3) flood sediments in a tributary valley. The origins of the Yenisei floods were likely diverse due to complex hydrological processes operating in the Sayan mountains. The possibilities include failures of multiple, variably impounded (ice, sedimentary, tectonic scarp, and lava flow dams) paleolakes in the two large intermontane basins of Darkhadyn Khotgor and Todza, and other minor basins, in the upper Yenisei River catchment. Dating techniques applied to the paleolakes in the Darkhadyn Khotgor and Todza basins revealed their formation during various periods in the middle–late Pleistocene and Holocene. Flooding from the Darkhadyn Khotgor appears to explain many of the inferred flood features, although contributions by flooding from other paleolake basins cannot be ruled out. Computer simulation of the flooding caused by a Darkhadyn Khotgor paleolake ice-dam failure indicates a probable peak discharge of  3.5 × 106 m3 s− 1, approximately one-fifth that of the floods that formed the Channeled Scabland in the U.S.A. Many of the outburst events probably occurred in the late Quaternary, but earlier floods could also have occurred.  相似文献   
170.
Jansson and Glasser (Jansson, K.N., Glasser, N.F., 2008. Modification of peripheral mountain ranges by former ice sheets: the Brecon Beacons, southern UK. Geomorphology 97, 178–189.) have recently provided unconventional interpretations of selected glacial erosional and depositional landforms in the Brecon Beacons, UK, based on remotely sensed imagery. These new interpretations contradict well-established and reliable evidence for the origins and ages of certain glacial landforms of this upland area and elsewhere. They suggest that during a post-Last Glacial Maximum (LGM) ice-sheet event ice flowed up supposed, essentially “fluvial” valleys producing “glacial lineations” and depositing marginal moraines at the valley heads and on cirque floors. We argue that their interpretations of some key landforms are incorrect and that they have ignored much of the previous dating and field geomorphological evidence. Sedimentary and morphological evidence (e.g., lack of erratic content; convex planform with respect to the headwall; relatively large height range of moraines; and close association with headwall extent, height, and steepness) all indicate that higher level cirque-floor and valley-head moraines in the Brecon Beacons (> c. 400 m) were formed by cirque glaciers. Available dating evidence indicates a Younger Dryas age. We demonstrate that the supposed “fluvial” valleys, comprising trough heads with steep headwalls, have more nearly parabolic than V-shaped cross profiles indicating substantial glacial modification. Field evidence shows that proposed key exemplar post-LGM glacial lineations are in fact debris flow deposits. We conclude that whilst the adoption of a macroscale approach can shed new light on large-scale, ice-sheet movements, this approach should not be undertaken without consideration of the associated field evidence.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号