首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   348篇
  免费   17篇
  国内免费   77篇
测绘学   7篇
大气科学   10篇
地球物理   191篇
地质学   23篇
海洋学   179篇
综合类   28篇
自然地理   4篇
  2024年   8篇
  2023年   14篇
  2022年   17篇
  2021年   15篇
  2020年   15篇
  2019年   14篇
  2018年   23篇
  2017年   10篇
  2016年   17篇
  2015年   22篇
  2014年   24篇
  2013年   11篇
  2012年   23篇
  2011年   39篇
  2010年   20篇
  2009年   22篇
  2008年   30篇
  2007年   17篇
  2006年   23篇
  2005年   12篇
  2004年   11篇
  2003年   5篇
  2002年   10篇
  2001年   6篇
  2000年   1篇
  1999年   8篇
  1998年   7篇
  1997年   4篇
  1996年   6篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有442条查询结果,搜索用时 15 毫秒
71.
北京城区河湖水质分析   总被引:11,自引:1,他引:10  
调研结果显示,2003年北京城区河湖(11个监测水体)总磷、总氮含量分别为0.142mg/L、1.481mg/L,已达到比较 严重的富营养状态.北京城市河湖属于藻型水体,初级生产力主要决定于浮游藻类的群落结构与密度.河湖水体中浮游 藻类密度为37867.82×10~4cells/L,其群落由蓝藻(Cyanophyta)、绿藻(Chlorophyta)、硅藻(Bcillariophyta)、甲藻(Pyrrophy— ta)、隐藻(Cryptophyta)、黄藻(Xanthophyta)、金藻(Chrysophyta)和裸藻(Eugleniphyta)构成.群落中蓝藻占绝对优势 (89.54%).在近几年的夏秋季连续发生程度不同的微囊藻(microcystis)水华,对水体功能和城市景观造成了不良影响. 主要原因是:(1)氮磷和有机物的污染,(2)给城市河湖补给的水量少,(3)河湖生态系统被损害,水体自净能力差.本文 对如何改善北京城市河湖水质提出了建议.  相似文献   
72.
为查明秦皇岛近海大面积褐潮连年暴发的成因,在2013年3—11月对该地区主要入海河流和沿岸褐潮暴发区的生源要素污染进行了连续调查研究。调查结果表明,所调查入海河流普遍为劣V类地表水,总氮(TN)超标严重,按照氮污染程度由高到低排列依次为大蒲河洋河戴河石河汤河东沙河。各河流中的碳、氮、磷、硅等污染物浓度在时间变化上没有统一规律。基于综合污染指数法的评价结果显示,大蒲河和洋河为重度污染,戴河和汤河从先前的轻度污染加重为中度污染。从污染物入海量上看,TN和化学需氧量(COD)是排放量最高的两种河源污染物,其中溶解态氮占TN的74.6%。在所调查河流中,洋河和大蒲河分别贡献了TN的38.2%和33.2%,同时大蒲河还贡献了75.8%的活性磷酸盐和37.7%的活性硅酸盐,而75.9%的COD来自汤河、洋河和大蒲河。秦皇岛河源污染物排放在时间上较为集中在6—9月的丰水期,但各河流单独的排放具有随机性,没有统一的季节性规律,表现出受人为调控影响明显的特点。秦皇岛沿岸褐潮暴发区的生源要素变化与河源污染物排放有显著性相关(P=0.05)。  相似文献   
73.
A comprehensive study on the phytoplankton standing stocks, species composition and dominant species in the eutrophic Changjiang(Yangtze River) Estuary(CE) was conducted to reveal the response of phytoplankton assemblage to Changjiang Diluted Water(CDW) and upwelling in the spring. Phytoplankton presented peak standing stocks(13.03 μg/L of chlorophyll a, 984.5×103 cells/L of phytoplankton abundance) along the surface isohaline of 25. Sixty-six species in 41 genera of Bacillariophyta and 33 species in 19 genera of Pyrrophyta were identified, as well as 5 species in Chlorophyta and Chrysophyta. Karenia mikimotoi was the most dominant species, followed by Prorocentrum dentatum, Paralia sulcata, Pseudo-nitzschia delicatissima and Skeletonema costatum. A bloom of K. mikimotoi was observed in the stratified stations, where the water was characterized by low nitrate, low phosphate, low turbidity, and specific ranges of temperature(18–22 °C) and salinity(27–32). K.mikimotoi and P. dentatum accumulated densely in the upper layers along the isohaline of 25. S. costatum was distributed in the west of the isohaline of 20. Benthonic P. sulcata presented high abundance near the bottom,while spread upward at upwelling stations. CDW resulted in overt gradients of salinity, turbidity and nutritional condition, determining the spatial distribution of phytoplankton species. The restricted upwelling resulted in the upward transport of P. sulcata and exclusion of S. costatum, K. mikimotoi and P. dentatum. The results suggested that CDW and upwelling were of importance in regulating the structure and distribution of phytoplankton assemblage in the CE and the East China Sea.  相似文献   
74.
The source and significance of three nutrients – nitrogen, phosphorous and silicon – were investigated by a modified dilution method performed on seawater samples from the Central Yellow Sea (CYS), in spring blooming period of 2007. This modified dilution method accounted for the phytoplankton growth rate, microzooplankton grazing mortality rate, the internal and external nutrient pools, as well as nutrients supplied through remineralization by microzooplankton grazing. The results indicate that phytoplankton growth during the bloom is mostly contributed by internal nutrient pools (KI=0.062–1.730). The external nutrient pools (KE=<0–0.362) are also of importance for phytoplankton growth during the bloom at some sampling sites. Furthermore, the contribution of the recycled-nutrient pool by remineralization (KR=<0–0.751) is significant when microzooplankton grazing rate was higher than 0.5 d−1 during the spring phytoplankton blooms in the Central Yellow Sea. Compared with internal phosphorus, internal nitrogen and silicon contribute more to the phytoplankton production at most sampling stations.  相似文献   
75.
海南清澜港水母暴发期间浮游生物生态特征研究   总被引:2,自引:0,他引:2  
自2010年12月-2011年5月,调查研究了海南清澜港海域的浮游生物群落特征,重点跟踪监测了2011年5月黄斑海蜇(Rhopilema hispidum)暴发期间海水营养盐水平及浮游生物群落结构变化。通过样品分析,共鉴定出浮游植物111种(变种和变型),细胞密度范围为(2.25×104)-(8.19×108)cells/L,浮游动物36种,丰度范围为19.39-25798.74ind/L,其中浮游动物以桡足类为优势种群,浮游植物以硅藻为主要优势种。在水母暴发期间浮游植物以热带骨条藻(Skeletonema tropicum)为主,浮游动物以桡足类为主。清澜港养殖区为水母水螅体提供生长发育的环境和水母暴发前期浮游植物大量增殖,为浮游动物提供充足的食物,在一定程度上促进了水母的暴发。  相似文献   
76.
Cyanobacterial blooms occur frequently in lakes due to eutrophication. Although a number of models have been proposed to forecast algal blooms, a good and applicable method is still lacking. This study explored a simple and effective mathematical-ecological model to evaluate the growth status and predict the population dynamics of Microcystis blooms. In this study, phytoplankton were collected and identified from 8 sampling sites in Chaohu Lake every month from July to October, 2010. The niche breadth and niche overlap of common species were calculated using standard equations, and the potential relative growth rates of Microcystis were calculated as a weighted-value of niche overlap. In July, the potential relative growth rate was 2.79 (a.u., arbitrary units) but then rapidly declined in the following months to -3.99 a.u. in September. A significant correlation (R=0.998, P<0.01) was found in the model between the net-increase in biomass of Microcystis in the field and the predicted values calculated by the niche model, we concluded that the niche model is suitable for forecasting the dynamics of Microcystis blooms. Redundancy analysis indicated that decreases in water temperature, dissolved oxygen and total dissolved phosphorus might be major factors underlying bloom decline. Based on the theory of community succession being caused by resource competition, the growth and decline of blooms can be predicted from a community structure. This may provide a basis for early warning and control of algal blooms.  相似文献   
77.
In the summer of 2008, the world’s largest green-tide occurred in the Yellow Sea, China. The hypothesized cause was the expansion of Porphyra yezoensis aquaculture along the Jiangsu coastline and the re-occurrence of a green-tide in 2009 was predicted. In this study, satellite and field images showed the formation of the June 2009 green-tide which again originated from the Jiangsu coast. The responsible species, its source and biomass accumulation were studied to support the previous hypothesis. Morphological and phylogenetic analysis demonstrated the homology of Ulva prolifera in the 2008 green-tide with the U. prolifera from P. yezoensis aquaculture rafts. About 91-505 kg/ha of U. prolifera was attached to the P. yezoensis aquaculture rafts and a total biomass of 4956 tonnes was estimated during the harvesting of P. yezoensis. This is sufficient to seed a bloom when they are dislodged from the rafts as a result of harvesting practices.  相似文献   
78.
《国际泥沙研究》2016,(4):311-323
Biological soil crusts serve as a vanguard for improving the ecological environment in arid, semi-arid desertification areas. It is a good indicator of the level of improvement which the local ecological environment is undertaking. In desert areas, water condition is a key factor of improving the ecological environment. As a first layer protection, biological crusts play an important role in local vegetation succession due to their abilities to conserve and maintain moisture. Using Maowusu desert in Yanchi of Ningxia province as an example, after three years of research, this paper chooses three kinds of biological crusts including lichen, moss and cyanobacterial which are under the cover of Artemisia ordosica as research objects. The results of this study indicate that, the closer biological crusts are to Artemisia ordosica vegetation, the thicker they become. In the same position of Artemisia ordosica vegetation, the thickness of moss crusts is the highest, followed by lichen crusts, and the thickness of cyanobacterial crusts is the lowest. Biological soil crusts coverage protects the natural water content of soil layers from 0 to 5 cm. Also, it effects falling water to infiltrate deeper, and cannot prevent the surface water content from evaporating effectively. The effect of biological crusts blocking water infiltration decreases with the increase of rainfall. At the same rainfall level, moss crusts provide the strongest water infiltration blockage, followed by lichen crusts and cyanobacterial crusts. With the increase of rainfall, the depth of water infiltration increases. At the same rainfall level, the relationship of water infiltration depth is as follows: cyanobacterial crusts 4 lichen crusts 4 moss crusts. With the increase of biological crusts thickness, they blocking water infiltration capacity is stronger, and the depth of water infiltration is smaller. Analysis on the characteristic of simulated rainfall process on biological crusts shows that sandy land can be fixed by applying appropriate artificial biological crusts to build a sustainable forest pro-tection system and to create a stable ecosystem in desertification area.  相似文献   
79.
The opening of the Bonnet Carré spillway to prevent flood threat to New Orleans in April 2008 created a sediment plume in the Lake Pontchartrain. The nutrient rich plume triggered a massive algal bloom in the lake. In this article, we have quantified the spatio-temporal distribution of the plume (suspended solids) and the bloom (chlorophyll-a (chl-a)) in the lake using remotely-sensed data. We processed the Moderate-resolution Imaging Spectroradiometer satellite data for mapping the total suspended solids (TSS) and chl-a concentrations. An existing algorithm was used for estimating TSS whereas a novel slope model was developed to predict the per-pixel chl-a concentration. Both algorithms were successful in capturing the spatio-temporal trend of TSS and chl-a concentrations, respectively. Algal growth was found to be inversely related to TSS concentrations and a time lag of ~45 days existed between the spillway opening and the appearance of the first algal bloom at an observation location.  相似文献   
80.
Partial pressure of CO2 in equilibrium with sample water (pCO2) for the coastal water in the Chukchi Sea was continuously observed in summer, 2008. Average daily CO2 flux calculated from the pCO2 and gas transfer coefficients ranged from −0.144 to −0.0701 g C m−2 day−1 depending on which gas transfer coefficient was used. The pCO2 before the landfast ice sheets melted appeared to be highly biologically controlled based on the following information: (1) the diurnal pattern of pCO2 was strongly correlated with Photosynthetic Photon Flux Density (PPFD); (2) high chlorophyll density was observed during periods of peak uptake; and (3) the day-to-day variation in the pCO2 strongly correlated with the presence or absence of near-shore ice sheets. The lowest pCO2 of 35 ppm together with the highest PPFD of 1362 μmol E m−2 s−1 were observed in the afternoon on June 28 in the presence of sea ice. The very low pCO2 observed in late June was likely caused by high photosynthetic rates related to high phytoplankton densities typically observed from spring to early summer near the ice edge, and by water low in salinity and CO2 released by melting sea ice early in the season.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号