首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   4篇
  国内免费   1篇
测绘学   1篇
地球物理   23篇
地质学   74篇
海洋学   1篇
天文学   1篇
综合类   1篇
自然地理   15篇
  2020年   3篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   2篇
  2014年   2篇
  2013年   8篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   8篇
  2008年   11篇
  2007年   6篇
  2006年   9篇
  2005年   10篇
  2004年   10篇
  2003年   6篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   3篇
  1997年   1篇
  1995年   3篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1977年   1篇
排序方式: 共有116条查询结果,搜索用时 15 毫秒
41.
Volcanism in association with large quantities of ice manifests itself in a variety of morphological forms developed under differing physical conditions. These physical conditions include the location, amount, thickness, and type of confining ice, the location and quantity of trapped water, and the surrounding topography. Ice in the form of thick continental ice sheets, thinner alpine glaciers or even perennial accumulations of snow can influence the resulting morphological form of the volcano. The chemical composition of the erupting magma, effusion rate and total erupted volume will also affect the shape of the resulting edifice. Quaternary volcanoes influenced by many of these factors are found in western Canada. The morphological forms range from tuyas to subglacial mounds to stratovolcanoes. This paper provides a review of ice-contact volcanism and volcanic products formed in these environments using Canadian examples for illustration.  相似文献   
42.
The boundary area between the Apenninic fold‐and‐thrust belt and the crystalline Calabrian Arc, located around Sangineto in northern Calabria, has been investigated. New geological mapping in the Sant'Agata area has been performed on the Triassic successions traditionally attributed to the metasedimentary San Donato Unit. This, coupled with a reappraisal of the stratigraphy and tectonics of coeval successions present more to the south in the Cetraro Unit, results in a new reconstruction of the Triassic evolution of all the metasedimentary successions found in the region. Four informal stratigraphic units have been distinguished in the S. Agata area. The lowest one (Unit A) consists of well‐bedded metalimestones and bioturbated marly limestones that correlate with Ladinian–Carnian carbonates in nearby areas. A second unit (Unit B), never recognized before, contains a complex alternation of dolomites, phyllites and some meta‐arenites containing several beds of Cavernoso facies, attributed to the Carnian. They grade upward to platform and platform‐margin dolomites of Norian–Rhaetian age (Unit C) that in turn are replaced upward and laterally by a fourth unit (Unit D) consisting of well‐bedded, dark dolomites and metalimestones with marly interlayers locally found as resedimented large blocks in slope conglomerates. Unit D correlates with Rhaetian–Liassic beds in nearby areas. Several pieces of evidence of post‐metamorphic contractional tectonics, with 140°N and 30°N trends, are found together with evidence of SW‐directed extension. The siliciclastic Carnian beds of Unit B are correlated with the phyllites of Cetraro, formerly believed to be Middle Triassic; moreover, it is suggested that in the Cetraro area Unit C is almost totally replaced by Unit D. This demonstrates that the former distinction between the two tectonic units in the whole area has to be discarded. We have made a general palaeoenvironmental reconstruction which progresses laterally, during Ladinian–Carnian times, from (i) a coastal, mixed siliciclastic–carbonate–evaporitic area at Cetraro to (ii) a transitional carbonate shelf where siliciclastic input was only episodic, and finally to (iii) a bioconstructed margin which was later replaced by a steepened margin created by tectonic instability. Starting from the Norian, subsidence shifted toward the former coastal area where an intraplatform, restricted basin developed. The proposed stratigraphy corresponds closely to the Alpujarride units of the Betic Cordillera, Spain. Moreover, it is shown that strong affinities also exist, in terms of the structural framework, with the metamorphic units of Tuscany and Liguria. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   
43.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
44.
The Alhambra (14th century AD ) in Granada (southeast Spain) is built at the summit of a Pliocene to Lower Pleistocene conglomeratic formation. Tens of small‐scale normal faults crop out along the northern hillslope of the Alhambra, which have a N130–N150°E strike, dipping 65–75° mostly to the southwest. These are closely spaced faults (approximately 5–30 m) with centimetre to several metre displacements. Several topographic steps in this area coincide with hectometre‐ to kilometre‐scale faults with the same kinematics as the small‐scale ones. Some of these faults appear to be active and related to the present seismicity detected in this region, and associated with the cracks and other damage observed in the Alhambra. Several focal mechanisms calculated in this study are in accordance with the dominant NW–SE orientated normal faults. We interpret that the topographic steps of these faults are a consequence of repeated earthquakes during the past 800 ka. The last large earthquake of approximately 5.1 magnitude in this area occurred in 1431, destroying the Alixares Palace, the Arabian fence and part of the Alhambra wall. We consider the seismic risk associated with these faults to be moderate, as the displacement is partitioned into several hectometre‐ to kilometre‐scale faults. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
45.
The structure of the Chilean Frontal Cordillera, located over the Central Andes flat-slab subduction segment (27°–28.5°S), is characterized by a thick-skinned deformation, affecting both the pre-rift basement and the Mesozoic and Cenozoic infill of the NNE-SSW Lautaro and Lagunillas Basins, which were developed during the Pangea-Gondwana break-up. The compressive deformation show a complex interaction between Mesozoic rift structures and thrust systems, affecting a suite of Permo-Triassic (258–245 Ma) granitic blocks. We used a combination of geological mapping, new structural data, balanced and restored cross sections and geochronological data to investigate the geometry and kinematics of the Andean thick-skinned thrust systems of the region. The thrust systems include double-vergent thick-skinned thrust faults, basement-cored anticlines and minor thin-skinned thrusts and folds. The presence of Triassic and Jurassic syn-rift successions along the hanging wall and footwall of the basement thrust faults are keys to suggest that the current structural framework of the region should be associated with the shortening of previous Mesozoic half grabens. Based on this interpretation, we propose a deformation mechanism characterized by the tectonic inversion of rift-related faults and the propagation of basement ramps that fold and cut both, the early normal faults and the basement highs. New U–Pb ages obtained from synorogenic deposits (Quebrada Seca and Doña Ana formations) indicate at least three important compressive pulses. A first pulse at ∼80 Ma (Late Cretaceous), a second pulse related to the K-T phase of Andean deformation and, finally, a third pulse that occurred during the lower Miocene.  相似文献   
46.
《International Geology Review》2012,54(15):1852-1872
Medium-grade metabasites and metapelites from the Cajamarca Complex (Central Cordillera of Colombia) are in fault contact with the Jurassic Ibague batholith and show a penetrative foliation, locally mylonitic, suggesting intense dynamic–thermal metamorphism. The amphibolites are composed of calcic amphibole + epidote + plagioclase + quartz plus rutile + titanite + apatite + carbonate as accessory phases. Chlorite and albite appear as retrograde replacements. The metapelites are mainly composed of phengite + quartz + garnet + chlorite, plus epidote + albite + apatite + titanite + haematite as accessory phases. Bulk geochemistry of the amphibolites indicates basaltic protoliths with a mid-ocean ridge basalt (MORB) signature, although enrichment in the mobile large-ion lithophile elements compared to MORB suggests pre- and/or syn-metamorphic alteration by fluids. Peak pressure–temperature determinations for both types of rocks are similar, ranging 550–580°C and 8 kbar (approximately 26 km depth and an apparent geothermal gradient of 22°C/km). 40Ar-39Ar dating of amphibole from two amphibolite samples and one phengitic mica from a pelitic schist yielded plateau ages of 146.5 ± 1.1 Ma and 157.8 ± 0.6 Ma, and 157.5 ± 0.4 Ma, respectively. These Late Jurassic ages contrast with previously published (Permian)Triassic ages of metamorphism in the Cajamarca Complex. Taken together, our data indicate tectonic-driven burial of oceanic supracrustal sequences down to mid-crustal depths during Late Jurassic times and are best explained as the result of terrane collision-related metamorphism and deformation in a fore-arc/volcanic-arc environment of the active western margin of Gondwana rather than as a result of Jurassic thermal–metamorphic resetting of a (Permian)Triassic metamorphic sequence during intrusion of the Jurassic Ibague batholith. Our results represent the first report of Jurassic terrane collision tectonics involving supracrustal oceanic rocks in the northwestern margin of Gondwana in Colombia.  相似文献   
47.
The present work investigates a mountain front within the Plio-Quaternary deposits belonging to the sedimentary fill of the Guadix-Baza Basin (Betic Cordillera, Southern Spain). This 30 km-long front, developed in soft sediments and within a context of high erosion, is generated by the recent activity of the Baza Normal Fault. The mountain front is the natural limit between the western and eastern sectors, corresponding to the two sub-basins of Guadix and Baza. The two main glacis described in previous works in the area of the Baza Fault – the Old Glacis in the Guadix Sub-basin and the Recent Glacis in the Baza Sub-basin – are interpreted here as a single one, displaced by the fault. Using this Glacis as a marker we deduced that its age and the transition of the basin from endorheic to exorheic must be much older than previous estimations. The Baza Fault may be considered as one of the most active faults of the central part of the Betic Cordillera, according to the results of the general quantitative analysis of the mountain front relief using the Smf/Vf ratio and the SL index.  相似文献   
48.
A new lichen dating method and new moraine observations enabled us to improve the chronology of glacier advances in the Cordillera Blanca (Peru) during the Little Ice Age (LIA). Our results reveal that an early LIA glacial advance occurred around AD 1330 ± 29. However, a second major glacial advance at the beginning of the 17th century overlapped the earlier stage for most glaciers. Hence, this second glacial stage, dated from AD 1630 ± 27, is considered as the LIA maximum glacial advance in the Cordillera Blanca. During the 17th–18th centuries, at least three glacial advances were recorded synchronously for the different glaciers (AD 1670 ± 24, 1730 ± 21, and 1760 ± 19). The moraines corresponding to the two first stages are close to the one in 1630 suggesting a slow recession of about 18% in the total length of the glacier. From the LIA maximum extent to the beginning of the 20th century, the 24 glaciers have retreated a distance of about 1000 m, corresponding to a reduction of 30% in their length. This rate is comparable to that observed during the 20th century. Estimates of palaeo-Equilibrium Line Altitudes show an increase in altitude of about 100 m from the LIA maximum glacial extension at the beginning of the 17th century to the beginning of the 20th century. Because long time series are not available for precipitation and temperature, this glacial retreat is difficult to explain by past climate changes. However, there is a fair correspondence between changes in glacier length and the δ18O recorded in the Quelccaya ice core at a century timescale. Our current knowledge of tropical glaciers and isotope variations leads us to suggest that this common tropical signal reflects a change from a wet LIA to the drier conditions of today. Finally, a remarkable synchronicity is observed with glacial variations in Bolivia, suggesting a common regional climatic pattern during the LIA.  相似文献   
49.
The structural signature in the area between the Baguio mineral district and Ansagan, Tuba, Benguet in the South Central Cordillera, northern Luzon, Philippines, is dominated by northeast- to ENE-trending faults, contained within a NNW–SSE-trending transtensional strip. This 50-km-long, 25-km-wide elongated tectonic zone is bounded to the west by the Pugo Fault and to the east by the Tebbo Fault, both being branches of the Philippine Fault System. Detailed structural geological (particularly microtectonic) analysis of fracture and mineral vein systems indicates strong conformity with the regional structural direction. Computed extensional stress axis σ3 directions are oriented N150° on average, sub-parallel to the strike of the bounding faults. The existence of known mineral deposits and prospects within the tectonic strip implies an intimate relationship between transtension and mineral occurrence.  相似文献   
50.
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号