首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6028篇
  免费   1187篇
  国内免费   1845篇
测绘学   607篇
大气科学   1643篇
地球物理   1398篇
地质学   2617篇
海洋学   1372篇
天文学   310篇
综合类   411篇
自然地理   702篇
  2024年   30篇
  2023年   100篇
  2022年   232篇
  2021年   262篇
  2020年   272篇
  2019年   339篇
  2018年   266篇
  2017年   270篇
  2016年   304篇
  2015年   319篇
  2014年   422篇
  2013年   446篇
  2012年   386篇
  2011年   412篇
  2010年   315篇
  2009年   436篇
  2008年   485篇
  2007年   471篇
  2006年   467篇
  2005年   369篇
  2004年   360篇
  2003年   273篇
  2002年   249篇
  2001年   205篇
  2000年   205篇
  1999年   170篇
  1998年   162篇
  1997年   141篇
  1996年   125篇
  1995年   114篇
  1994年   106篇
  1993年   75篇
  1992年   67篇
  1991年   37篇
  1990年   46篇
  1989年   25篇
  1988年   33篇
  1987年   10篇
  1986年   14篇
  1985年   11篇
  1984年   11篇
  1983年   5篇
  1981年   2篇
  1980年   3篇
  1978年   4篇
  1977年   1篇
  1954年   3篇
排序方式: 共有9060条查询结果,搜索用时 234 毫秒
231.
273.15K下LiCl-Li2B4O7-H2O体系热力学性质的等压研究   总被引:2,自引:0,他引:2       下载免费PDF全文
用等压法研究了273 15K下LiCl-Li2B4O7-H2O体系中纯盐水溶液(离子强度范围为LiCl0 2046~2 5055mol·kg-1,Li2B4O70 1295~0 3700mol·kg-1)以及混合盐水溶液(离子强度范围为0 0931~2 4911mol·kg-1)渗透系数和水活度;计算了LiCl-Li2B4O7-H2O体系的饱和蒸汽压,获得饱和蒸汽压、渗透系数随离子强度的变化规律。用实验数据以最小二乘法求取了LiCl和Li2B4O7纯盐参数及体系的混合盐参数,拟合的标准偏差分别为0 0077和0 026。用该模型计算的渗透系数值与实验结果取得合理的一致。同时研究结果与273 15K下LiCl-Li2SO4-H2O体系的渗透系数随离子强度变化的规律作了比较。本研究对完善低温下含锂、硼盐湖卤水体系的热力学模型和盐湖资源的综合开发利用具有重要意义。  相似文献   
232.
不同浓度的Na2SO4水溶液的拉曼光谱显示了SO42-的四个拉曼活性带:980 cm-1处的SO42-的对称伸缩振动模式v1带,1 106 cm-1处的反对称伸缩振动模式v3带,448 cm-1处的变形振动模式v2带和617 cm-1处的变形振动模式v4带。482 cm-1处的肩膀峰是由于NaSO4-离子对的形成对448 cm-1的v2带的影响而形成的SO42-的一个新的振动峰。浓Na2SO4水溶液中,水共享离子对[Na+.H2O.SO42-]-是主要的离子对物种。随着Na2SO4水溶液浓度的增加,Na+和SO42-的相互作用增强,NaSO4-离子对所占的摩尔分数增加。  相似文献   
233.
Climate factors play critical roles in controlling chemical weathering, while chemically weathered surface material can regulate climate change. To estimate global chemical weathering fluxes and CO2 balance, it is important to identify the characteristics and driving factors of chemical weathering and CO2 consumption on the Tibetan Plateau, especially in glaciated catchments. The analysis of the hydro-geochemical data indicated that silicate weathering in this area was inhibited by low temperatures, while carbonate weathering was promoted by the abundant clastic rocks with fresh surfaces produced by glacial action. Carbonate weathering dominated the riverine solute generation (with a contribution of 58%, 51%, and 43% at the QiangYong Glacier (QYG), the WengGuo Hydrological Station (WGHS), and the lake estuary (LE), respectively). The oxidation of pyrite contributed to 35%, 42%, and 30% of the riverine solutes, while silicate weathering contributed to 5%, 6%, and 26% of the riverine solutes at the QYG, WGHS, and LE, respectively. The alluvial deposit of easily weathering fine silicate minerals, the higher air temperature, plant density, and soil thickness at the downstream LE in comparison to upstream and midstream may lead to longer contact time between pore water and mineral materials, thus enhancing the silicate weathering. Because of the involvement of sulfuric acid produced by the oxidation of pyrite, carbonate weathering in the upstream and midstream did not consume atmospheric CO2, resulting in the high rate of carbonate weathering (73.9 and 75.6 t km−2 yr−1, respectively, in maximum) and potential net release of CO2 (with an upper constraint of 35.6 and 35.2 t km−2 yr−1, respectively) at the QYG and WGHS. The above results indicate the potential of the glaciated area of the Tibetan Plateau with pyrite deposits being a substantial natural carbon source, which deserves further investigation.  相似文献   
234.
The North American Land Data Assimilation System project phase 2 (NLDAS‐2) has run four land surface models for a 30‐year (1979–2008) retrospective period. Land surface evapotranspiration (ET) is one of the most important model outputs from NLDAS‐2 for investigating land–atmosphere interaction or to monitor agricultural drought. Here, we evaluate hourly ET using in situ observations over the Southern Great Plains (Atmospheric Radiation Measurement/Cloud and Radiation Testbed network) for 1 January 1997–30 September 1999 and daily ET u‐sing in situ observations at the AmeriFlux network over the conterminous USA for an 8‐year period (2000–2007). The NLDAS‐2 models compare well against observations, with the National Centers for Environmental Prediction's Noah land surface model performing best, followed, in order, by the Variable Infiltration Capacity, Sacramento Soil Moisture Accounting, and Mosaic models. Daily evaluation across the AmeriFlux network shows that for all models, performance depends on season and vegetation type; they do better in spring and fall than in winter or summer and better for deciduous broadleaf forest and grasslands than for croplands or evergreen needleleaf forest. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
235.
Differentiation of the continental crust is the result of complex interactions between a large number of processes, which govern partial melting of the deep crust, magma formation and segregation, and magma ascent to significantly higher crustal levels. The anatectic metasedimentary rocks exposed in the Southern Marginal Zone of the Limpopo Belt represent an unusually well‐exposed natural laboratory where the portion of these processes that operate in the deep crust can be directly investigated in the field. The formation of these migmatites occurred via absent incongruent melting reactions involving biotite, which produced cm‐ to m‐scale, K2O‐poor garnet‐bearing stromatic leucosomes, with high Ca/Na ratios relative to their source rocks. Field investigation combined with geochemical analyses, and phase equilibrium modelling designed to investigate some aspects of disequilibrium partial melting show that the outcrop features and compositions of the leucosomes suggest several steps in their evolution: (1) Melting of a portion of the source, with restricted plagioclase availability due to kinetic controls, to produce a magma (melt + entrained peritectic minerals in variable proportions relative to melt); (2) Segregation of the magma at near peak metamorphic conditions into melt accumulation sites (MAS), also known as future leucosome; (3a) Re‐equilibration of the magma with a portion of the bounding mafic residuum via chemical diffusion (H2O, K2O), which triggers the co‐precipitation of quartz and plagioclase in the MAS; (3b) Extraction of melt‐dominated magma to higher crustal levels, leaving peritectic minerals entrained from the site of the melting reaction, and the minerals precipitated in the MASs to form the leucosome in the source. The key mechanism controlling this behaviour is the kinetically induced restriction of the amount of plagioclase available to the melting reaction. This results in elevated melt H2O and K2O and chemical potential gradient for these components across the leucosome/mafic residuum contact. The combination of all of these processes accurately explains the composition of the K2O‐poor leucosomes. These findings have important implications for our understanding of melt segregation in the lower crust and minimum melt residency time which, according to the chemical modelling, is <5 years. We demonstrate that in some migmatitic granulites, the leucosomes constitute a type of felsic refractory residuum, rather than evidence of failed magma extraction. This provides a new insight into the ways that source heterogeneity may control anatexis.  相似文献   
236.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
237.
Tim P. Duval 《水文研究》2019,33(11):1510-1524
Partitioning of rainfall through a forest canopy into throughfall, stemflow, and canopy interception is a critical process in the water cycle, and the contact of precipitation with vegetated surfaces leads to increased delivery of solutes to the forest floor. This study investigates the rainfall partitioning over a growing season through a temperate, riparian, mixed coniferous‐deciduous cedar swamp, an ecosystem not well studied with respect to this process. Seasonal throughfall, stemflow, and interception were 69.2%, 1.5%, and 29.3% of recorded above‐canopy precipitation, respectively. Event throughfall ranged from a low of 31.5 ± 6.8% for a small 0.8‐mm event to a high of 82.9 ± 2.4% for a large 42.7‐mm event. Rain fluxes of at least 8 mm were needed to generate stemflow from all instrumented trees. Most trees had funnelling ratios <1.0, with an exponential decrease in funnelling ratio with increasing tree size. Despite this, stand‐scale funnelling ratios averaged 2.81 ± 1.73, indicating equivalent depth of water delivered across the swamp floor by stemflow was greater than incident precipitation. Throughfall dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) averaged 26.60 ± 2.96 and 2.02 ± 0.16 mg L?1, respectively, which were ~11 and three times above‐canopy rain levels. Stemflow DOC averaged 73.33 ± 7.43 mg L?1, 35 times higher than precipitation, and TDN was 4.45 ± 0.56 mg L?1, 7.5 times higher than rain. Stemflow DOC concentration was highest from Populus balsamifera and TDN greatest from Thuja occidentalis trees. Although total below‐canopy flux of TDN increased with increasing event size, DOC flux was greatest for events 20–30 mm, suggesting a canopy storage threshold of DOC was readily diluted. In addition to documenting rainfall partitioning in a novel ecosystem, this study demonstrates the excess carbon and nitrogen delivered to riparian swamps, suggesting the assimilative capacity of these zones may be underestimated.  相似文献   
238.
Understanding groundwater–surface water exchange in river banks is crucial for effective water management and a range of scientific disciplines. While there has been much research on bank storage, many studies assume idealized aquifer systems. This paper presents a field‐based study of the Tambo Catchment (southeast Australia) where the Tambo River interacts with both an unconfined aquifer containing relatively young and fresh groundwater (<500 μS/cm and <100 years old) and a semi‐confined artesian aquifer containing old and saline groundwater (electrical conductivity > 2500 μS/cm and >10 000 years old). Continuous groundwater elevation and electrical conductivity monitoring within the different aquifers and the river suggest that the degree of mixing between the two aquifers and the river varies significantly in response to changing hydrological conditions. Numerical modelling using MODFLOW and the solute transport package MT3DMS indicates that saline water in the river bank moves away from the river during flooding as hydraulic gradients reverse. This water then returns during flood recession as baseflow hydraulic gradients are re‐established. Modelling also indicates that the concentration of a simulated conservative groundwater solute can increase for up to ~34 days at distances of 20 and 40 m from the river in response to flood events approximately 10 m in height. For the same flood event, simulated solute concentrations within 10 m of the river increase for only ~15 days as the infiltrating low‐salinity river water drives groundwater dilution. Average groundwater fluxes to the river stretch estimated using Darcy's law were 7 m3/m/day compared with 26 and 3 m3/m/day for the same periods via mass balance using Radon (222Rn) and chloride (Cl), respectively. The study shows that by coupling numerical modelling with continuous groundwater–surface water monitoring, the transient nature of bank storage can be evaluated, leading to a better understanding of the hydrological system and better interpretation of hydrochemical data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
239.
At first sight, experimental results and observations on rocks suggest that the Zr content in rutile, where equilibrated with quartz and zircon, should be a useful thermometer for metamorphic rocks. However, diffusion data for Zr in rutile imply that thermometry should not, for plausible rates of cooling, give the high temperatures commonly observed in high‐grade metamorphic rocks. It is suggested here that such observations can be accounted for by high‐T diffusive closure of Si in rutile, causing the interior of rutile grains to become insensitive to the thermometer equilibrium well above the temperature of Zr diffusive closure. Paired with comparatively slow grain boundary diffusion and problematic zircon nucleation, this allows for cases of Zr retention in rutile through temperatures where Zr is still diffusively mobile within rutile grains. Other observations that may be accounted for in this context are large inter‐grain ranges of rutile Zr contents uncorrelated with rutile grain size, and flat Zr profiles across individual rutile grains, counter to what would be expected from diffusive closure. A consequence is that it is unlikely that Zr‐in‐rutile thermometry will be useful for estimating rock cooling rates.  相似文献   
240.
We measured the concentrations of dissolved inorganic carbon (DIC) and major ions and the stable carbon isotope ratios of DIC (δ13CDIC) in two creeks discharging from carbonate‐rich sulphide‐containing mine tailings piles. Our aim was to assess downstream carbon evolution of the tailings discharge as it interacted with the atmosphere. The discharge had pH of 6.5–8.1 and was saturated with respect to carbonates. Over the reach of one creek, the DIC concentrations decreased by 1.1 mmol C/l and δ13CDIC increased by ~4.0‰ 200 m from the seep source. The decrease in the DIC concentrations was concomitant with decreases in the partial pressure of CO2(aq) because of the loss of excess CO2(aq) from the discharge. The corresponding enrichment in the δ13CDIC is because of kinetic isotope fractionation accompanying the loss of CO2(g). Over the reach of the other creek, there was no significant decrease in the DIC concentrations or notable changes in the δ13CDIC. The insignificant change in the DIC concentrations and the δ13CDIC is because the first water sample was collected 160 m away from the discharge seep, not accessible during this research. In this case, most of the excess CO2(aq) was lost before our first sampling station. Our results indicate that neutral discharges from tailings piles quickly lose excess CO2(aq) to the atmosphere and the DIC becomes enrich in 13C. We suggest that a significant amount of carbon cycling in neutral discharges from tailings piles occur close to the locations where the discharge seeps to the surface. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号