首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3350篇
  免费   499篇
  国内免费   1097篇
测绘学   1109篇
大气科学   172篇
地球物理   308篇
地质学   2353篇
海洋学   482篇
天文学   54篇
综合类   230篇
自然地理   238篇
  2024年   30篇
  2023年   114篇
  2022年   134篇
  2021年   160篇
  2020年   100篇
  2019年   174篇
  2018年   108篇
  2017年   130篇
  2016年   129篇
  2015年   176篇
  2014年   256篇
  2013年   190篇
  2012年   267篇
  2011年   209篇
  2010年   237篇
  2009年   244篇
  2008年   263篇
  2007年   200篇
  2006年   210篇
  2005年   226篇
  2004年   170篇
  2003年   155篇
  2002年   135篇
  2001年   150篇
  2000年   105篇
  1999年   93篇
  1998年   85篇
  1997年   86篇
  1996年   70篇
  1995年   72篇
  1994年   47篇
  1993年   33篇
  1992年   35篇
  1991年   39篇
  1990年   43篇
  1989年   38篇
  1988年   6篇
  1987年   2篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1976年   1篇
  1974年   1篇
  1959年   1篇
  1958年   1篇
  1954年   1篇
  1948年   2篇
排序方式: 共有4946条查询结果,搜索用时 459 毫秒
391.
392.
王俊  雷宏武  徐芬  王静 《地下水》2010,32(2):155-157
固结沉降计算是工程建筑中的重要内容之一。传统的固结沉降计算多是基于渗透数为常数的Terzaghi模型,这与实际的固结过程有较大的差别。采用Carman—Koze模型与一维非线性固结沉降模型进行耦合来模拟固结沉降过程。结果表明,固结导致的渗透系数的变化对固结有较大的影响,特别是在后期这种影响会越来越大。  相似文献   
393.
直排式真空预压法加固软土地基的试验与研究   总被引:3,自引:0,他引:3  
目前常规真空预压法加固软土是通过设置真空管网、水平向排水砂垫层和竖向排水体共同完成。为节省砂源和经费,设计了直排式真空预压法,它是对常规真空预压法的技术改进和创新。本文通过对直排式真空预压与常规真空预压现场试验区的监测与检测数据对比分析得出:直排式真空预压大幅度提高了真空预压的能效,即直排式真空预压在排水板不同深度内的真空压力比常规真空预压高出10%~50%,且深度越深效果越显著;直排式真空预压的沉降速率比常规真空预压提高约30%,直排式真空预压比常规真空预压平均总沉降量提高49.3%,缩短了预压时间;同时直排式真空预压法所加固的土体,其各项物理力学指标均好于常规的真空预压法,且不需中粗砂垫层,节省了材料,降低了工程造价。  相似文献   
394.
城市浅埋软岩隧道施工沉降分析及对策   总被引:1,自引:0,他引:1  
浅埋软岩隧道施工沉降变形控制是浅埋地下工程面临的关键难题,其中最基础的内容是对开挖引起的沉降变形规律的掌握。通过对新建龙岩至厦门铁路石桥头隧道地表沉降变形观测分析,将地表沉降变形划分为三个主要阶段:初始沉降阶段、加速沉降阶段和减速沉降阶段;结合隧道拱顶沉降监测结果,得出浅埋软岩隧道地表沉降与拱顶沉降正相关的结论。隧道开挖对掌子面前后纵向地表沉降的主要影响范围分别为1.5D和3D(D为开挖跨度);横向地表沉降影响范围包括隧道中线两侧各4D的范围,地表建(构)筑物受到较大影响包括隧道中线两侧各2D的范围。针对地表和拱顶沉降过大,采取全断面超前预注浆方案进行处理,监测结果显示全断面超前预注浆能有效控制拱顶下沉和地表沉降量,收敛值减小则不显著,说明该方案达到了控制沉降变形的目的。  相似文献   
395.
采用双带测量方式,法拉第杯和离子计数器同时接收与跳峰接收相结合,建立了超微量钐同位素的热表面电离质谱的测量方法。优化了制样程序和质谱测量程序,研究了蒸发带电流对离子流强度的影响,考察了从纳克至微克不同样品用量的测量效果及其中Nd、Eu干扰核素的情况。对4 ng~2μg的天然丰度钐样品进行了同位素比值分析,相对标准偏差均小于1.1%。  相似文献   
396.
第四纪洞庭盆地赤山隆起与安乡凹陷升降运动的沉积记录   总被引:12,自引:0,他引:12  
通过地表地质调查和钻井资料,对第四纪洞庭盆地南部赤山隆起及其西侧安乡凹陷的沉积和地貌特征进行研究,进而探讨二者的升降过程。赤山隆起为居于洞庭盆地南部的小型抬升断块,主要受东、西边界正断裂所控制,长约18 km,宽4~5 km。隆起内早更新世汨罗组和中更新世新开铺组、白沙井组组成多级阶地。安乡凹陷内充填200~300 m厚的河流和湖泊相沉积,自下而上依次为早更新世华田组、汨罗组,中更新世洞庭湖组,晚更新世坡头组,全新世湖积、冲积等。地貌与沉积特征表明,早更新世—中更新世中期赤山隆起总体表现出抬升期与稳定期交替的脉动式抬升,而安乡凹陷则表现出缓慢与快速沉降交替的幕式沉降特征;前者构造较稳定期和构造抬升期分别对应于后者缓慢沉降期和快速沉降期。中更新世晚期二者因区域构造反转而整体抬升并遭受剥蚀。晚更新世—全新世安乡凹陷在拗陷背景下接受沉积。上述第四纪早期赤山隆起脉动式抬升与安乡凹陷幕式沉降的对应关系,为洞庭盆地与周边隆起的盆—山耦合过程提供了约束,同时暗示盆地断陷活动可能与地幔上隆导致中地壳物质自凹陷向周边迁移有关。  相似文献   
397.
洞庭盆地中更新世洞庭湖组砾石特征及其意义   总被引:1,自引:0,他引:1  
对位于洞庭盆地安乡凹陷东南部的两护村ZKC1孔中更新世洞庭湖组砾石层进行了粒度和砾态的统计分析。结果表明,砾石的粒度变化反映出2个较大尺度的由大→小的旋回,早旋回由洞庭湖组下段砂砾层组成,晚旋回由洞庭湖组中段上部的砂砾层组成,反映出中更新世早-中期安乡凹陷的两次由慢→快的幕式沉降过程。在上述2个大的粒度旋回之上,叠加有多个更小尺度的砾石粗、细变化,主要与气候干湿的频繁波动有关。洞庭湖组中段顶部砾石的磨圆度明显偏低,反映其沉积时期盆地沉降和周缘隆起区抬升活动的增强。  相似文献   
398.
<正>The thermo-electric coefficients of twenty-six magnetite samples,formed either by magmatism or metamorphism,were tested by the thermo-electric instrument BHET—06.Results showed that the coefficient is of a constant value of about -0.05 mV/℃.It is emphasized that because every magnetite grain was tested randomly,the coefficient is independent of the crystallographic direction.This fact means the thermal voltage generated from a single magnetite crystal can be accumulated,and as a result a new thermo-electric field can arise when a gradient thermal field exists and is active within the earth's crust.Because magnetite is widespread in the earth's crust(generally appearing more in the middle-lower crust),there is more-than-random probability that the additional thermo-electric field can be generated when certain thermal conditions are fulfilled.We,therefore,used the thermo-electric effect of magnetite to study the mechanism responsible for the presence of abnormal geo-electric fields during earthquake formation and occurrence, because gradient thermal fields always exist before earthquakes.The possible presence of additional thermo-electric fields was calculated under theoretical seismological conditions,using the following calcu-lation formula:E= - 0.159(σ×△T×φ×ρ_2×[(h~2-2x~2)cosα+ 3hxsinα]/ρ_1(h~2 +x~2)~(5/2)).In the above formula,σis thermo-electric coefficient of magnetite,△T is the temperature difference acting on it,φis a sectional area on a block of magnetite vertically perpendicular to the direction of the thermal current.ρ_1 andρ_2 are the respective resistivities of magnetite and the crust,and h,α,and x,respectively,h is the depth of embedded magnetite block,αmeans the angle created by the horizontal line and ligature of the two poles of magnetite block,and x is the distance from observation point to projective center point of the magnetite block on earth surface.According to simulations calculated with this formula,additional thermo-electric field intensity may reach as high as n to n×10~2 mV/km.This field is strong enough to cause obvious anomalies in the background geo-electric field,and can be easy probed by earthquake monitoring equipment. Therefore,we hypothesize that geo-electric abnormalities which occur during earthquakes may be caused by the thermo-electric effect of magnetite.  相似文献   
399.
本文研究内容为印度洋东北部边缘海安达曼海的构造演化。利用安达曼海域东部大范围二维地震数据资料及钻井数据,结合区域地质概况以及前人研究成果,选取8条具有代表性的断层并将其划分为一级和二级断裂,运用生长指数法和古落差法对断层进行定量分析,再通过计算安达曼海东部凹陷4条主测线的构造沉降量,探讨构造演化过程。结果表明:选取的生长断层中3条属于一级断裂,跨度大,几乎切穿整个地层,属于控制安达曼海域地区沉降的大断裂;另外5条属于二级断裂,控制构造带的展布情况,属于构造带的分界线。渐新世时期,印度–澳大利亚板块与欧亚板块之间处于软碰撞阶段,断层发育缓慢,上下盘落差较小,生长指数与构造沉降量也处于低值;中新世时期,板块之间的耦合效应不断增强,断层发育速度加快,此时上下盘厚度最大,是形成多处断裂带以及多种断裂样式的关键时期,各地层生长指数和构造沉降量也达到峰值。上新世至今,安达曼海沟–弧–盆体系逐渐稳定,断层活动减弱,断裂上下盘厚度差基本一致,生长指数差异较小,构造沉降量基本稳定在 1 km 左右。  相似文献   
400.
本文利用1993–2019年基于海表面高度异常的涡旋数据集和高度计数据统计分析了日本海区域中尺度涡旋的大小、极性、生命周期、振幅、传播等表面特征的时空变化规律。27年间,共探测到1 429个涡旋,气旋和反气旋数量基本相当,其中气旋675个,反气旋754个。两种极性涡旋均具有较强的季节变化:秋季较多,冬季次之,春季最少。郁陵盆地、大和盆地等为涡旋多发区域呈现西南–东北向带状分布。其中,南部海域反气旋占优,靠近津轻海峡的北部海域气旋占优。西部和南部受东韩暖流和对马暖流的驱动,涡旋移动方向与流场基本一致,北部涡旋与黎曼寒流以及副极地锋流有关。研究表明,动力学不稳定是涡旋在秋冬季大量产生的重要原因。此外,半封闭盆地、局地流场以及复杂的海气相互作用等都可能会对涡旋的产生和消亡造成一定影响。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号