首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   7篇
  国内免费   4篇
地球物理   13篇
地质学   28篇
海洋学   1篇
综合类   4篇
  2021年   2篇
  2019年   2篇
  2018年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2010年   1篇
  2009年   5篇
  2008年   2篇
  2007年   3篇
  2006年   2篇
  2004年   1篇
  2000年   2篇
  1998年   1篇
  1997年   1篇
  1995年   2篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1985年   1篇
  1984年   3篇
排序方式: 共有46条查询结果,搜索用时 15 毫秒
1.
2.
Hydrogeochemical processes that would occur in polluted groundwater and aquifer system, may reduce the sensitivity of Sr isotope being the indicator of hydraulic fracturing flowback fluids(HFFF) in groundwater. In this paper, the Dameigou shale gas field in the northern Qaidam Basin was taken as the study area, where the hydrogeochemical processes affecting Sr isotope was analysed. Then, the model for Sr isotope in HFFF-polluted groundwater was constructed to assess the sensitivity of Sr isotope as HFFF indicator. The results show that the dissolution can release little Sr to polluted groundwater and cannot affect the εSr(the deviation of the 87 Sr/86 Sr ratio) of polluted groundwater. In the meantime, cation exchange can considerably affect Sr composition in the polluted groundwater. The Sr with low εSr is constantly released to groundwater from the solid phase of aquifer media by cation exchange with pollution of Quaternary groundwater by the HFFF and it accounts for 4.6% and 11.0% of Sr in polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. However, the Sr from cation exchange has limited impact on Sr isotope in polluted groundwater. Addition of Sr from cation exchange would only cause a 0.2% and 1.2% decrease in εSr of the polluted groundwater when the HFFF flux reaches 10% and 30% of the polluted groundwater, respectively. These results demonstrate that hydrogeochemical processes have little effect on the sensitivity of Sr isotope being the HFFF indicator in groundwater of the study area. For the scenario of groundwater pollution by HFFF, when the HFFF accounts for 5%(in volume percentage) of the polluted groundwater, the HFFF can result in detectable shifts of εSr(ΔεSr=0.86) in natural groundwater. Therefore, after consideration of hydrogeochemical processes occurred in aquifer with input of the HFFF, Sr isotope is still a sensitive indicator of the Quaternary groundwater pollution by the HFFF produced in the Dameigou shale of Qaidam Basin.  相似文献   
3.
In the management of water resources, quality of water is just as important as its quantity. In order to know the quality and/or suitability of groundwater for domestic and irrigation in upper Gunjanaeru River basin, 51 water samples in post-monsoon and 46 in pre-monsoon seasons were collected and analyzed for various parameters. Geological units are alluvium, shale and quartzite. Based on the analytical results, chemical indices like percent sodium, sodium adsorption ratio, residual sodium carbonate, permeability index (PI) and chloroalkaline indices were calculated. The pre-monsoon waters have low sodium hazard as compared to post-monsoon season. Residual sodium carbonate values revealed that one sample is not suitable in both the seasons for irrigation purposes due the occurrence of alkaline white patches and low permeability of the soil. PI values of both seasons revealed that the ground waters are generally suitable for irrigation. The positive values of Chloroalkaline indices in post-monsoon (80%) and in pre-monsoon (59%) water samples indicate absence of base-exchange reaction (chloroalkaline disequilibrium), and remaining samples of negative values of the ratios indicate base-exchange reaction (chloroalkaline equilibrium). Chadha rectangular diagram for geochemical classification and hydrochemical processes of groundwater for both seasons indicates that most of waters are Ca–Mg–HCO3 type. Assessment of water samples from various methods indicated that majority of the water samples in both seasons are suitable for different purposes except at Yanadipalle (sample no. 8) that requires precautionary measures. The overall quality of groundwater in post-monsoon season in all chemical constituents is on the higher side due to dissolution of surface pollutants during the infiltration and percolation of rainwater and at few places due to agricultural and domestic activities.  相似文献   
4.
史维浚 《铀矿地质》1989,5(2):95-101
本文在总结铀矿水分散体规模的基础上,对铀矿水文地球化学代矿工作的网度要求进行了讨论,提出区调阶段的工作比例尺为1:20万—1:10万,普查阶段为1:5万—1:2.5万,详查阶段为1:1万—1:5000;在阐明各工作阶段所圈定的水文地球化学场的地质含义的基础上,讨论了中、小比例尺水文地球化学调查工作的原理、效果及技术要求。提出了在潮湿多雨地区开展水分散流找矿的合理性和优越性。指出了水分散流找矿的关键是分析方法的灵敏度和精度。在水文地球化学调查中要注意通用找矿标志和矿化度(电导)的取样分析工作。  相似文献   
5.
The chemical characteristics, formation and natural attenuation of pollutants in the coal acid mine drainage (AMD) at Xingren coalfield, Southwest China, are discussed in this paper based on the results of a geochemical investigation as well as geological and hydrogeological background information. The chemical composition of the AMD is controlled by the dissolution of sulfide minerals in the coal seam, the initial composition of the groundwater and the water–rock interaction. The AMD is characterized by high sulfate concentrations, high levels of dissolved metals (Fe, Al, Mn, etc.) and low pH values. Ca2+ and SO4 2− are the dominant cation and anion in the AMD, respectively, while Ca2+ and HCO3 are present at significant levels in background water and surface water after the drainage leaves the mine site. The pH and alkalinity increase asymptotically with the distance along the flow path, while concentrations of sulfate, ferrous iron, aluminum and manganese are typically controlled by the deposition of secondary minerals. Low concentrations of As and other pollutants in the surface waters of the Xingren coalfield could be due to relatively low quantities being released from coal seams, to adsorption and coprecipitation on secondary minerals in stream sediments, and to dilution by unpolluted surface recharge. Although As is not the most serious water quality problem in the Xingren region at present, it is still a potential environmental problem. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
6.
In the western part of the city of Zagreb, Croatia, hydrogeochemical and isotopic investigations of the Samobor aquifer were carried out with the aim of determining the differences in hydrogeochemical characteristics at increasing aquifer depths. The aquifer comprises 40-m thick gravelly–sandy deposits, with lenses and interlayers of silt and clay. The analyses have proven that with increasing aquifer depth, there are decreases in groundwater temperature and the values of electrical conductivity and increases in the sodium, iron and manganese concentrations. The δ13C distribution shows an evident increase in biogenic carbon concentrations with increasing aquifer depth. The measured specific 14C activities showed that the deeper part of the aquifer is characterized by slow water exchange, while the shallower part is influenced by current recharge, although the pumping wells located on the well-field downstream penetrate the aquifer fully. A direct exchange of water from the Sava River and groundwater occurs in the near vicinity of the river. This exchange weakens further away, while the difference in hydrogeochemical characteristics between the Sava River water and groundwater increases.  相似文献   
7.
8.
9.
Thermal water chemistry from the Biga Peninsula (NW Turkey) was investigated in order to discriminate among hydrochemical facies, and isotopic groups and identify the major geochemical processes. A systematic hydrogeochemical survey was carried out, incorporating new data as well as results from the previous studies. Results were used to further develop hydrogeological and geochemical models. Thermal water compositions were classified into four groups and the processes affecting evolution of water compositions were interpreted. Types 1, 2 and 3 are representatives of water corresponding to sulfate dominant fluids (mainly NaSO4-type), chloride dominant fluids (mainly NaCl-type), and bicarbonate dominant fluids (Na- or CaHCO3-type), respectively. Group 4 comprises the fluids with compositions that are not dominated by any distinctive anion. Groundwater infiltrates and circulates through the marbles of the Paleozoic basement. The isotopic composition of thermal waters revealed that deep infiltration of meteoric water took place in periods of changed climatic conditions.  相似文献   
10.
Groundwater in contact with ore deposits may acquire a chemical composition that could be used as a guide for exploration. Eight well-water samples are collected from a known uranium-mineralized area near Abu Zenima, west central Sinai to examine the applicability of using the hydrogeochemical technique in the search for uranium mineralization in similar arid areas. The analytical chemical data of the ground water is compared with ground radiometric measurements. The obtained results indicate that groundwater affected by uranium mineralization has a specific relativity of major anions expressed essentially as SO4>Cl>HCO3 and to a lesser extent as Cl>SO4>HCO3, associated as a rule with low magnesium content. This association constitutes a signature of uranium mineralization on the composition of groundwater in west central Sinai and could be used as an important exploration guide in the search for uranium deposits in similar areas. Anomalies in Ni, Fe, Zn and Cr and other pathfinder elements in groundwater can furnish geochemical guides to uranium ores. The immobile trace element anomalies, including Zn, Ni and Fe are strongly distributed near the orebody; whereas the relatively mobile trace elements, including Co, U, V and Cr, constitute the dispersion haloes away from the orebody. A new hydrogeochemical discrimination diagram is constructed to be used as a quick and cost effective exploration tool in the search for uranium occurrences in environmentally similar arid areas. Based on the obtained results, a new site for uranium occurrence, west of W. Baba, is delineated and recommended for future detailed geological and geochemical surveying.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号