首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   557篇
  免费   54篇
  国内免费   66篇
测绘学   7篇
大气科学   1篇
地球物理   55篇
地质学   333篇
海洋学   14篇
天文学   220篇
综合类   17篇
自然地理   30篇
  2024年   3篇
  2023年   4篇
  2022年   10篇
  2021年   8篇
  2020年   8篇
  2019年   13篇
  2018年   11篇
  2017年   9篇
  2016年   15篇
  2015年   19篇
  2014年   20篇
  2013年   31篇
  2012年   33篇
  2011年   36篇
  2010年   26篇
  2009年   31篇
  2008年   49篇
  2007年   43篇
  2006年   41篇
  2005年   32篇
  2004年   30篇
  2003年   37篇
  2002年   18篇
  2001年   14篇
  2000年   18篇
  1999年   23篇
  1998年   16篇
  1997年   8篇
  1996年   10篇
  1995年   18篇
  1994年   10篇
  1993年   12篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1976年   1篇
排序方式: 共有677条查询结果,搜索用时 46 毫秒
71.
72.
We collect the data of twin kilohertz quasi‐periodic oscillations (kHz QPOs) published before 2012 from 26 neutron star (NS) low‐mass X‐ray binary (LMXB) sources, then we analyze the centroid frequency (ν) distribution of twin kHz QPOs (lower frequency ν1 and upper frequency ν2) both for Atoll and Z sources. For the data without shift‐and‐add, we find that Atoll and Z sources show different distributions of ν1, ν2 and ν2/ν1, but the same distribution of Δν (difference of twin kHz QPOs), which indicates that twin kHz QPOs may share the common properties of LXMBs and have the same physical origins. The distribution of Δν is quite different from a constant value, so is ν 2/ν1 from a constant ratio. The weighted mean values and maxima of ν1 and ν2 in Atoll sources are slightly higher than those in Z sources. We also find that shift‐and‐add technique can reconstruct the distributions of ν1 and Δν. The K‐S test results of ν1 and Δν between Atoll and Z sources from data with shift‐and‐add are quite different from those without it, and we think that this may be caused by the selection biases of the sample. We also study the properties of the quality factor (Q) and the root‐meansquared (rms) amplitude of 4U 0614+09 with data from the two observational methods, but the errors are too big to make a robust conclusion. The NS spin frequency (νs) distribution of 28 NS‐LMXBs show a bigger mean value (∼408 Hz) than that (∼281 Hz) of the radio binary millisecond pulsars (MSPs), which may be due to the lack of the spin detections from Z sources (systematically lower than 281 Hz). Furthermore, on the relations between the kHz QPOs and NS spin frequency νs, we find the approximate correlations of the mean values of Δν with NS spin and its half, respectively. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
73.
74.
We examine the disc-jet connection in stellar mass and supermassive black holes by investigating the properties of their compact emission in the hard X-ray and radio bands. We compile a sample of ∼100 active galactic nuclei with measured mass, 5 GHz core emission, and 2–10 keV luminosity, together with eight galactic black holes with a total of ∼50 simultaneous observations in the radio and X-ray bands. Using this sample, we study the correlations between the radio (LR) and the X-ray (LX) luminosity and the black hole mass (M). We find that the radio luminosity is correlated with both M and LX, at a highly significant level. We show how this result can be used to extend the standard unification by orientation scheme to encompass unification by mass and accretion rate.  相似文献   
75.
The solar system, as we know it today, is about 4.5 billion years old. It is widely believed that it was essentially completed 100 million years after the formation of the Sun, which itself took less than 1 million years, although the exact chronology remains highly uncertain. For instance: which, of the giant planets or the terrestrial planets, formed first, and how? How did they acquire their mass? What was the early evolution of the “primitive solar nebula” (solar nebula for short)? What is its relation with the circumstellar disks that are ubiquitous around young low-mass stars today? Is it possible to define a “time zero” (t 0), the epoch of the formation of the solar system? Is the solar system exceptional or common? This astronomical chapter focuses on the early stages, which determine in large part the subsequent evolution of the proto-solar system. This evolution is logarithmic, being very fast initially, then gradually slowing down. The chapter is thus divided in three parts: (1) The first million years: the stellar era. The dominant phase is the formation of the Sun in a stellar cluster, via accretion of material from a circumstellar disk, itself fed by a progressively vanishing circumstellar envelope. (2) The first 10 million years: the disk era. The dominant phase is the evolution and progressive disappearance of circumstellar disks around evolved young stars; planets will start to form at this stage. Important constraints on the solar nebula and on planet formation are drawn from the most primitive objects in the solar system, i.e., meteorites. (3) The first 100 million years: the “telluric” era. This phase is dominated by terrestrial (rocky) planet formation and differentiation, and the appearance of oceans and atmospheres.  相似文献   
76.
Several AGN and black hole X-ray binaries show a clear very broad iron line, which is strong evidence that the black holes are rapidly spinning. Detailed analysis of these objects shows that the emission line is not significantly affected by absorption and that the source variability is principally due to variation in amplitude of a power-law. Underlying this is a much less variable, relativistically-smeared, reflection-dominated, component which carries the imprint of strong gravity at a few gravitational radii. The strong gravitational light bending in these regions then explains the power-law variability as due to changes in height of the primary X-ray source above the disc. The reflection component, in particular its variability and the profile of the iron line, enables us to study the innermost regions around an accreting, spinning, black hole.  相似文献   
77.
78.
We study and review disk protoplanet interactions using local shearing box simulations. These suffer the disadvantage of having potential artefacts arising from periodic boundary conditions but the advantage, when compared to global simulations, of being able to capture much of the dynamics close to the protoplanet at high resolution for low computational cost. Cases with and without self sustained MHD turbulence are considered. The conditions for gap formation and the transition from type I migration are investigated and found to depend on whether the single parameter M p R 3/(M* H 3), with M p, M*, R, and H being the protoplanet mass, the central mass, the orbital radius and the disk semi-thickness, respectively, exceeds a number of order unity. We also investigate the coorbital torques experienced by a moving protoplanet in an inviscid disk. This is done by demonstrating the equivalence of the problem for a moving protoplanet to one where the protoplanet is in a fixed orbit which the disk material flows through radially as a result of the action of an appropriate external torque. For sustainable coorbital torques to be realized a quasi steady state must be realized in which the planet migrates through the disk without accreting significant mass. In that case, although there is sensitivity to computational parameters, in agreement with earlier work by Masset and Papaloizou [2003, ApJ, 588, 494] based on global simulations, the coorbital torques are proportional to the migration speed and result in a positive feedback on the migration, enhancing it and potentially leading to a runaway. This could lead to fast migration for protoplanets in the Saturn mass range in massive disks and may be relevant to the mass period correlation for extrasolar planets which gives a preponderance of sub Jovian masses at short orbital periods.  相似文献   
79.
The anomalous X-ray pulsar 4U 0142+61 was recently detected in the mid infrared bands with the SPITZER Observatory (Wang, Chakrabarty and Kaplan: Nature 440, 772 (2006)). This observation is the first instance for a disk around an AXP. From a reanalysis of optical and infrared data, we show that the observations indicate that the disk is likely to be an active disk rather than a passive dust disk beyond the light cylinder, as proposed in the discovering paper. Furthermore, we show that the irradiated accretion disk model can also account for all the optical and infrared observations of the anomalous X-ray pulsars in the persistent state.  相似文献   
80.
In this paper we have presented a very general class of solutions for rotating fluid disks around massive objects (neglecting the self gravitation of the disk) with density as a function of the radial coordinate only and pressure being nonzero. Having considered a number of cases with different density and velocity distributions, we have analysed the stability of such disks under both radial and axisymmetric perturbations. For a perfect gas disk with γ= 5/3 the disk is stable with frequency (MG/r3)1/2 for purely radial pulsation with expanding and contracting boundary. In the case of axisymmetric perturbation the critical γc for neutral stability is found to be much less than 4/3 indicating that such disks are mostly stable under such perturbations. On leave of absence from Government College, Jagdalpur 494005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号