首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24622篇
  免费   1053篇
  国内免费   782篇
测绘学   645篇
大气科学   633篇
地球物理   1844篇
地质学   3350篇
海洋学   1010篇
天文学   17437篇
综合类   255篇
自然地理   1283篇
  2024年   48篇
  2023年   105篇
  2022年   243篇
  2021年   208篇
  2020年   225篇
  2019年   321篇
  2018年   183篇
  2017年   228篇
  2016年   230篇
  2015年   317篇
  2014年   339篇
  2013年   426篇
  2012年   374篇
  2011年   436篇
  2010年   484篇
  2009年   1881篇
  2008年   1835篇
  2007年   2130篇
  2006年   2147篇
  2005年   1851篇
  2004年   1987篇
  2003年   1749篇
  2002年   1513篇
  2001年   1315篇
  2000年   1125篇
  1999年   1078篇
  1998年   1231篇
  1997年   334篇
  1996年   217篇
  1995年   367篇
  1994年   373篇
  1993年   184篇
  1992年   108篇
  1991年   111篇
  1990年   110篇
  1989年   163篇
  1988年   94篇
  1987年   107篇
  1986年   86篇
  1985年   50篇
  1984年   36篇
  1983年   26篇
  1982年   14篇
  1981年   11篇
  1980年   7篇
  1979年   4篇
  1977年   12篇
  1976年   4篇
  1900年   3篇
  1897年   7篇
排序方式: 共有10000条查询结果,搜索用时 328 毫秒
61.
We develop a detailed model of the Milky Way (a `prototypical' disk galaxy) and extend it to other disks with the help of some simple scaling relations, obtained in the framework of Cold Dark Matter models. This phenomenological (`hybrid') approach to the study of disk galaxy evolution allows us to reproduce successfully a large number of observed properties of disk galaxies in the local Universe and up to redshift z ∼ 1. The important conclusion is that, on average, massive disks have formed the bulk of their stars earlier than their lower mass counterparts: the `star formation hierarchy' has been apparently opposite to the `dark matter assembly' hierarchy. It is not yet clear whether `feedback' (as used in semi-analytical models of galaxy evolution) can explain that discrepancy. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
62.
63.
64.
65.
66.
67.
68.
69.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号