首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7148篇
  免费   881篇
  国内免费   783篇
测绘学   241篇
大气科学   331篇
地球物理   1910篇
地质学   2336篇
海洋学   878篇
天文学   1710篇
综合类   291篇
自然地理   1115篇
  2024年   25篇
  2023年   72篇
  2022年   159篇
  2021年   221篇
  2020年   228篇
  2019年   249篇
  2018年   205篇
  2017年   230篇
  2016年   242篇
  2015年   228篇
  2014年   302篇
  2013年   392篇
  2012年   256篇
  2011年   305篇
  2010年   277篇
  2009年   475篇
  2008年   500篇
  2007年   549篇
  2006年   551篇
  2005年   415篇
  2004年   404篇
  2003年   391篇
  2002年   321篇
  2001年   268篇
  2000年   298篇
  1999年   273篇
  1998年   257篇
  1997年   146篇
  1996年   106篇
  1995年   119篇
  1994年   90篇
  1993年   53篇
  1992年   40篇
  1991年   24篇
  1990年   34篇
  1989年   22篇
  1988年   17篇
  1987年   16篇
  1986年   12篇
  1985年   12篇
  1984年   8篇
  1983年   2篇
  1982年   8篇
  1981年   6篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有8812条查询结果,搜索用时 15 毫秒
61.
62.
We model the subnebulae of Jupiter and Saturn wherein satellite accretion took place. We expect each giant planet subnebula to be composed of an optically thick (given gaseous opacity) inner region inside of the planet’s centrifugal radius (where the specific angular momentum of the collapsing giant planet gaseous envelope achieves centrifugal balance, located at rCJ ∼ 15RJ for Jupiter and rCS ∼ 22RS for Saturn) and an optically thin, extended outer disk out to a fraction of the planet’s Roche-lobe (RH), which we choose to be ∼RH/5 (located at ∼150 RJ near the inner irregular satellites for Jupiter, and ∼200RS near Phoebe for Saturn). This places Titan and Ganymede in the inner disk, Callisto and Iapetus in the outer disk, and Hyperion in the transition region. The inner disk is the leftover of the gas accreted by the protoplanet. The outer disk may result from the nebula gas flowing into the protoplanet during the time of giant planet gap-opening (or cessation of gas accretion). For the sake of specificity, we use a solar composition “minimum mass” model to constrain the gas densities of the inner and outer disks of Jupiter and Saturn (and also Uranus). Our model has Ganymede at a subnebula temperature of ∼250 K and Titan at ∼100 K. The outer disks of Jupiter and Saturn have constant temperatures of 130 and 90 K, respectively.Our model has Callisto forming in a time scale ∼106 years, Iapetus in 106-107 years, Ganymede in 103-104 years, and Titan in 104-105 years. Callisto takes much longer to form than Ganymede because it draws materials from the extended, low density portion of the disk; its accretion time scale is set by the inward drift times of satellitesimals with sizes 300-500 km from distances ∼100RJ. This accretion history may be consistent with a partially differentiated Callisto with a ∼300-km clean ice outer shell overlying a mixed ice and rock-metal interior as suggested by Anderson et al. (2001), which may explain the Ganymede-Callisto dichotomy without resorting to fine-tuning poorly known model parameters. It is also possible that particulate matter coupled to the high specific angular momentum gas flowing through the gap after giant planet gap-opening, capture of heliocentric planetesimals by the extended gas disk, or ablation of planetesimals passing through the disk contributes to the solid content of the disk and lengthens the time scale for Callisto’s formation. Furthermore, this model has Hyperion forming just outside Saturn’s centrifugal radius, captured into resonance by proto-Titan in the presence of a strong gas density gradient as proposed by Lee and Peale (2000). While Titan may have taken significantly longer to form than Ganymede, it still formed fast enough that we would expect it to be fully differentiated. In this sense, it is more like Ganymede than like Callisto (Saturn’s analog of Callisto, we expect, is Iapetus). An alternative starved disk model whose satellite accretion time scale for all the regular satellites is set by the feeding of planetesimals or gas from the planet’s Roche-lobe after gap-opening is likely to imply a long accretion time scale for Titan with small quantities of NH3 present, leading to a partially differentiated (Callisto-like) Titan. The Cassini mission may resolve this issue conclusively. We briefly discuss the retention of elements more volatile than H2O as well as other issues that may help to test our model.  相似文献   
63.
Europa is bombarded by intense radiation that erodes the surface, launching molecules into a thin “atmosphere” representative of surface composition. In addition to atoms and molecules created in the mostly water ice surface such as H2O, O2, H2, the atmosphere is known to have species representative of trace surface materials. These trace species are carried off with the 10-104 H2O molecules ejected by each energetic heavy ion, a process we have simulated using molecular dynamics. Using the results of those simulations, we found that a neutral mass spectrometer orbiting ∼100 km above the surface could detect species with surface concentrations above ∼0.03%. We have also modeled the atmospheric spatial structure of the volatile species CO2 and SO2 under a variety of assumptions. Detections of these species with moderate time and space resolution would allow us to constrain surface composition, chemistry and to study space weathering processes.  相似文献   
64.
65.
66.
珠江三角洲地区的城市地质问题主要有地表塌陷、地裂缝、泥石流、滑坡和崩塌以及软土沉陷等。其成因除最直接的自然因素所致外,还有人为不合理的生产和生活活动诱发而加剧城市地质问题的发生发展。根据珠江三角洲城市地质问题的现状,提出了城市地质问题的防治对策。  相似文献   
67.
River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into an ecologically functional meandering channel. Experimental data collected using a distorted Froude‐scaled flume analysis show that channel expansion and widening, thalweg meandering and riffle and pool development are possible using discrete plantings of rigid, emergent vegetation, and the magnitudes of these adjustments depend on the shape of the vegetation zone and the density of the vegetation. These experimental results were verified and validated using a recently developed numerical model, and model output was then used to discuss mechanistically how rivers respond to the introduction of in‐stream woody vegetation. Finally, a hybrid method of meander design is proposed herein where managed vegetation plantings are used to trigger or force the desired morphologic response, transforming a straight, degraded reach into a more functional meandering corridor. It is envisioned that such numerical models could become the primary tool for designing future stream restoration programs involving vegetation and assessing the long‐term stability of such activities. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
68.
69.
Quaternary catchments in the south of the Sorbas Basin, SE Spain have been affected by two regionally significant river captures. The river captures were triggered by changes in regional gradients associated with sustained Quaternary uplift in the region of 160 m Ma−1. The first capture occurred in the early Pleistocene and re-routed 15% of the original Sorbas Basin drainage into the Carboneras Basin to the south. The second occurred in the late Pleistocene and re-routed 73% of the original Sorbas Basin drainage to the east. This latter capture had dramatic consequences for base-level in the Sorbas Basin master drainage. Local base-level was lowered by 90 m at the capture site, 50 m at 7 km upstream and 25 m at 13 km upstream of the site. The base-level change instigated a complex re-organisation of the drainage networks in systems tributary to the master drainage over the ensuing period (some 100 ka). After the capture, drainage systems closer to the capture site experienced a tenfold increase in incision rates over most of their network. Those located some 13 km upstream of the capture site experienced a fivefold increase in incision, although in this instance, the changes do not appear to have propagated to the headwater regions of the drainage nets. The sensitivity of individual catchments was largely governed by geological controls (structure and lithology). The detailed network evolution in the most sensitive areas can be traced by reconstructing former drainage pathways using abandoned drainage cols and the alignment and degree of incision of the drainage networks. Three main stages of evolution can be identified which record the progressive spread of base-level changes from the master drainage. These are Stage 1 (pre-capture): original south-to-north consequent drainage; Stage 2 (early stage, post capture): aggressive subsequent southwest-to-northeast and east–west drainage developed along structural lineaments first in the east of the area (Stage 2a), and later in the west of the area (Stage 2b); and Stage 3 (late stage, post capture): obsequent drainage developing on the topography of the Stage 2 drainage. All stages of the network evolution are associated with drainage re-routing as a function of river capture at a variety of scales. The results highlight the complex response of the fluvial system, and the very different geomorphological histories of adjacent catchments, emphasising the need for regional approaches for examining long-term changes in fluvial systems.  相似文献   
70.
河道体系是侵蚀和沉积物搬运的重要通道,控制了大陆边缘源汇体系中砂体总体的输送和分布格局,并可有效指示古代构造活动、物源供给、气候变迁和海平面变化等丰富地质信息。研究基于高分辨率的三维地震、钻测井资料,结合层序划分方法和地震沉积学综合分析手段,揭示了南海北部珠一坳陷早—中中新世古珠江分流河道体系的类型和展布特征,并且以典型层序为例精细揭示了海平面变化控制下河道类型由辫状向曲流的转换。同时,在研究区地震剖面上识别到多处异常下切现象,经研究可解释为辫状河道内的汇流冲刷,其典型特征为:① 下切深度局部增大;② 平面近似圆形或椭圆形;③ 内部为砂质充填。虽然汇流冲刷结构在地震剖面特征上与“传统”意义的下切谷极易混淆,但在沉积特征和成因上存在较大差别,因此,对它的识别有助于避免层序界面的错误判别,并且其后期充填的河道砂体具有局限分布的特点,易于在后期海侵泥岩的覆盖下形成潜在的岩性圈闭新类型。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号