全文获取类型
收费全文 | 8211篇 |
免费 | 706篇 |
国内免费 | 882篇 |
专业分类
测绘学 | 3713篇 |
大气科学 | 589篇 |
地球物理 | 882篇 |
地质学 | 1771篇 |
海洋学 | 875篇 |
天文学 | 40篇 |
综合类 | 724篇 |
自然地理 | 1205篇 |
出版年
2024年 | 30篇 |
2023年 | 88篇 |
2022年 | 356篇 |
2021年 | 418篇 |
2020年 | 415篇 |
2019年 | 397篇 |
2018年 | 285篇 |
2017年 | 426篇 |
2016年 | 419篇 |
2015年 | 435篇 |
2014年 | 424篇 |
2013年 | 583篇 |
2012年 | 443篇 |
2011年 | 448篇 |
2010年 | 379篇 |
2009年 | 456篇 |
2008年 | 480篇 |
2007年 | 490篇 |
2006年 | 406篇 |
2005年 | 379篇 |
2004年 | 358篇 |
2003年 | 286篇 |
2002年 | 250篇 |
2001年 | 205篇 |
2000年 | 154篇 |
1999年 | 121篇 |
1998年 | 153篇 |
1997年 | 139篇 |
1996年 | 81篇 |
1995年 | 57篇 |
1994年 | 49篇 |
1993年 | 33篇 |
1992年 | 47篇 |
1991年 | 28篇 |
1990年 | 22篇 |
1989年 | 12篇 |
1988年 | 9篇 |
1987年 | 7篇 |
1986年 | 9篇 |
1985年 | 7篇 |
1984年 | 6篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1954年 | 1篇 |
排序方式: 共有9799条查询结果,搜索用时 31 毫秒
91.
黄土高原地区地质灾害多发频发,危害严重,应用亚米级的高分二号(GF-2)卫星影像数据,提取地质灾害信息,并对室内解译结果进行了野外查证。本文提出了以GF-2卫星数据为主要信息源,进行地质灾害解译的技术方案;并以宁夏南部黄土高原区为例,验证了该方法的适用性,为规模化地开展基于国产高分系列卫星的黄土高原地区地质灾害遥感解译提供了可行的技术方案;通过GF-2卫星影像与常用的国内外卫星数据用于地质灾害信息判释的对比研究,认为GF-2卫星影像对于地质灾害信息的识别能够满足地质灾害遥感解译的要求,GF-2卫星影像的应用具有较高的性价比和显著的经济社会效益。 相似文献
92.
建设油气输送管道需依据一定比例尺的带状地形图进行施工图设计,本文以WorldView-Ⅲ卫星0.31 m分辨率的遥感立体像对为数据源,利用MapMatrix遥感影像数据处理平台进行立体数据采集,采用AutoCAD和南方CASS软件进行数据编辑,输出满足需要的DLG(数字线划图)。通过比对地面检查点与DLG成果来研究所得DLG的平面和高程精度,为高分辨率遥感技术在油气输送管道行业探索了新的应用方向。 相似文献
93.
Sudhir Kumar Singh Szilárd Szabó George P. Petropoulos Manika Gupta Tanvir Islam 《国际地球制图》2017,32(2):113-127
Analysis of Earth observation (EO) data, often combined with geographical information systems (GIS), allows monitoring of land cover dynamics over different ecosystems, including protected or conservation sites. The aim of this study is to use contemporary technologies such as EO and GIS in synergy with fragmentation analysis, to quantify the changes in the landscape of the Rajaji National Park (RNP) during the period of 19 years (1990–2009). Several statistics such as principal component analysis (PCA) and spatial metrics are used to understand the results. PCA analysis has produced two principal components (PC) and explained 84.1% of the total variance, first component (PC1) accounted for the 57.8% of the total variance while the second component (PC2) has accounted for the 26.3% of the total variance calculated from the core area metrics, distance metrics and shape metrics. Our results suggested that notable changes happened in the RNP landscape, evidencing the requirement of taking appropriate measures to conserve this natural ecosystem. 相似文献
94.
Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models 总被引:5,自引:0,他引:5
The rapid increase in human population has increased the groundwater resources demand for drinking, agricultural and industrial purposes. The main purpose of this study is to produce groundwater potential map (GPM) using weights-of-evidence (WOE) and evidential belief function (EBF) models based on geographic information system in the Azna Plain, Lorestan Province, Iran. A total number of 370 groundwater wells with discharge more than 10 m3s?1were considered and out of them, 256 (70%) were randomly selected for training purpose, while the remaining114 (30%) were used for validating the model. In next step, the effective factors on the groundwater potential such as altitude, slope aspect, slope angle, curvature, distance from rivers, drainage density, topographic wetness index, fault distance, fault density, lithology and land use were derived from the spatial geodatabases. Subsequently, the GPM was produced using WOE and EBF models. Finally, the validation of the GPMs was carried out using areas under the ROC curve (AUC). Results showed that the GPM prepared using WOE model has the success rate of 73.62%. Similarly, the AUC plot showed 76.21% prediction accuracy for the EBF model which means both the models performed fairly good predication accuracy. The GPMs are useful sources for planners and engineers in water resource management, land use planning and hazard mitigation purpose. 相似文献
95.
Nowadays, different image pansharpening methods are available, which combine the strengths of different satellite images that have different spectral and spatial resolutions. These different image fusion methods, however, add spectral and spatial distortions to the resultant images depending on the required context. Therefore, a careful selection of the fusion method is required. Simultaneously, it is also essential that the fusion technique should be efficient to cope with the large data. In this paper, we investigated how different pansharpening algorithms perform, when applied to very high-resolution WorldView-3 and QuickBird satellite images effectively and efficiently. We compared these 27 pansharpening techniques in terms of quantitative analysis, visual inspection and computational complexity, which has not previously been formally tested. In addition, 12 different image quality metrics available in literature are used for quantitative analysis purpose. 相似文献
96.
The estimation of total evaporation is fundamental for water accounting, considering its influence on water availability. Moreover, the current increase in water consumption (e.g. in sub-Saharan Africa and the world over), land cover/use changes, deteriorating water quality and the climate change projections in most regions of the world underscore the need to understand water loss. So far, different approaches have been developed and implemented in estimating the variations of total evaporation, with varying accuracies. The aim of this work was therefore, to provide a review of these different approaches for estimating total evaporation, as well as a detailed discussion of their strengths and weaknesses. Findings from this review have shown that total evaporation estimates derived, using ground-based meteorological and micro-meteorological methods are inadequate for representing its large-scale spatial variations. On the other hand, remote sensing technology, which acquires data at different resolutions (i.e. radiometric, spectral, spatial and temporal), provides timely, up-to-date and relatively accurate spatial estimates of total evaporation over large geographic coverage, for sustainable and effective water accounting, which is key for well-informed and improved management of water resources at both catchment and regional scales. In this regard, more details on the remote sensing-based methods of estimating total evaporation are provided, especially considering the robust technological advancements and its potential in characterizing earth features over time and space. This work has also managed to identify research gaps and challenges in the accurate estimation of total evaporation, using remote sensing, especially with the emergence of more advanced sensors and the characteristics of the landscape. 相似文献
97.
Regional scale urban built-up areas and surface urban heat islands (SUHI) are important for urban planning and policy formation. Owing to coarse spatial resolution (1000 m), it is difficult to use Moderate Resolution Imaging Spectroradiometer (MODIS) Land surface temperature (LST) products for mapping urban areas and visualization, and SUHI-related studies. To overcome this problem, the present study downscaled MODIS (1000 m resolution)-derived LST to 250 m resolution to map and visualize the urban areas and identify the basic components of SUHI over 12 districts of Punjab, India. The results are compared through visual interpretation and statistical procedure based on similarity analysis. The increased entropy value in the downscaled LST signifies higher information content. The temperature variation within the built-up and its environs is due to difference in land use and is depicted better in the downscaled LST. The SUHI intensity analysis of four cities (Ludhiana, Patiala, Moga and Vatinda) indicates that mean temperature in urban built-up core is higher (38.87 °C) as compared to suburban (35.85 °C) and rural (32.41 °C) areas. The downscaling techniques demonstrated in this paper enhance the usage of open-source wide swath MODIS LST for continuous monitoring of SUHI and urban area mapping, visualisation and analysis at regional scale. Such initiatives are useful for the scientific community and the decision-makers. 相似文献
98.
Monitoring canopy growth and grain yield of paddy rice in South Korea by using the GRAMI model and high spatial resolution imagery 总被引:1,自引:0,他引:1
Monitoring crop conditions and forecasting crop yields are both important for assessing crop production and for determining appropriate agricultural management practices; however, remote sensing is limited by the resolution, timing, and coverage of satellite images, and crop modeling is limited in its application at regional scales. To resolve these issues, the Gramineae (GRAMI)-rice model, which utilizes remote sensing data, was used in an effort to combine the complementary techniques of remote sensing and crop modeling. The model was then investigated for its capability to monitor canopy growth and estimate the grain yield of rice (Oryza sativa), at both the field and the regional scales, by using remote sensing images with high spatial resolution. The field scale investigation was performed using unmanned aerial vehicle (UAV) images, and the regional-scale investigation was performed using RapidEye satellite images. Simulated grain yields at the field scale were not significantly different (p = 0.45, p = 0.27, and p = 0.52) from the corresponding measured grain yields according to paired t-tests (α = 0.05). The model’s projections of grain yield at the regional scale represented the spatial grain yield variation of the corresponding field conditions to within ±1 standard deviation. Therefore, based on mapping the growth and grain yield of rice at both field and regional scales of interest within coverages of a UAV or the RapidEye satellite, our results demonstrate the applicability of the GRAMI-rice model to the monitoring and prediction of rice growth and grain yield at different spatial scales. In addition, the GRAMI-rice model is capable of reproducing seasonal variations in rice growth and grain yield at different spatial scales. 相似文献
99.
The aim of this study is to present an automatic approach for olive tree dendrometric parameter estimation from airborne laser scanning (ALS) data. The proposed method is based on a unique combination of the alpha-shape algorithm applied to normalized point cloud and principal component analysis. A key issue of the alpha-shape algorithm is to define the α parameter, as it directly affects the crown delineation results. We propose to adjust this parameter based on a group of representative trees in an orchard for which the classical field measurements were performed. The best value of the α parameter is one whose correlation coefficient of dendrometric parameters between field measurements and estimated values is the highest. We determined crown diameters as principal components of ALS points representing a delineated crown. The method was applied to a test area of an olive orchard in Spain. The tree dendrometric parameters estimated from ALS data were compared with field measurements to assess the quality of the developed approach. We found the method to be equally good or even superior to previously investigated semi-automatic methods. The average error is 19% for tree height, 53% for crown base height, and 13% and 9% for the length of the longer diameter and perpendicular diameter, respectively. 相似文献
100.
高灵敏度机载L波段微波辐射计探测海表盐度 总被引:1,自引:0,他引:1
海水盐度是研究大洋环流和全球气候变化的重要参数,L波段(1400-1427MHz)微波辐射计是进行海水盐度遥感的最有效工具.在该频段内,微波辐射亮度温度对海水盐度变化的灵敏度为0.5K/psu,而用于海洋研究的盐度分辨率为0.1-0.2psu,要求微波辐射计的灵敏度优于0.1K.高灵敏度机载L波段微波辐射计,应用数字增益波动自动补偿和温度补偿技术,保证了系统的稳定性,并采用高效的滤波技术有效地抑制了全球定位信号(GPS)对接收机的干扰,灵敏度达到0.08K.进行了多次航空和海上对比遥感试验,获得了分辨率优于0.2psu、误差精度0.42psu的测量结果. 相似文献