首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   5篇
  国内免费   3篇
大气科学   1篇
地球物理   7篇
地质学   44篇
海洋学   5篇
天文学   2篇
自然地理   16篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   3篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   4篇
  2006年   4篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1995年   1篇
  1994年   9篇
  1993年   2篇
  1991年   2篇
  1990年   2篇
排序方式: 共有75条查询结果,搜索用时 15 毫秒
11.
12.
The late Jurassic reconstruction for the Ul’ban synclinorium was proposed based on the lithological and structural similarity of the Upper Permian and Mesozoic complexes of the Yankan-Dzhagdy and Ul’ban lithotectonic zones of the Amur-Okhotsk fold system. It was suggested that the Un’ya-Bom subzone of the Yankan-Dzhagdy LTZ is a fragment of the Ul’ban synclinorium (including its eastern centroclinal closure) that was detached and westward displaced (for 400–600 km) in the first half of the Cretaceous.  相似文献   
13.
Thirty-six Coleoptera (beetle) taxa and other insects were identified from the late-glacial and early-Holocene sediments at Kråkenes Lake. Compared with other Scandinavian late-glacial sites, this is a rather sparse record. The water beetles found in the Allerod are characteristic of a poorly vegetated clear-water lake. The terrestrial fauna is indicative of dwarf-shrub and moss vegetation. A marked decline in the number of species at the start of the Younger Dryas was rather rapid, probably over less than 80 calendar yrs. No obligate tundra species replaced the Allerod fauna. Most of the Younger Dryas is virtually devoid of beetles. The increase in numbers and diversity of both aquatic and terrestrial species at the Younger Dryas/Holocene transition is very rapid. After an initial pioneer stage, beetles associated with dwarf-shrub heath and willow scrub appeared, but no obligate tree or forest taxa were recorded.Mutual Climatic Range (MCR) temperature reconstructions suggest that the Allerod was colder and more continental than present. The near absence of beetles in the Younger Dryas probably reflects very cold conditions. A rapid temperature rise at the start of the Holocene resulted in a warmer and more continental climate than present.  相似文献   
14.
This paper highlights the importance of differentiating between precipitation amount and moisture availability (‘humidity’/‘aridity’) when considering proxy records of climate change. While the terms are sometimes used interchangeably, moisture availability is determined by both (i) precipitation amount and (ii) temperature, through its influence on potential evapotranspiration. As many palaeoenvironmental proxies reflect changes in this water balance rather than purely precipitation amount, it is important to distinguish between the potential relative influences of precipitation and temperature if those records are to be interpreted in terms of climate mechanisms and/or compared with model outputs. As a case study, we explore how precipitation and temperature have determined moisture availability in South Africa's summer rainfall zone over the last 45 000 years. Using quantitative reconstructions of mean annual temperature, summer rainfall amount and an aridity index, our analysis reveals strong spatiotemporal variability in the relative influences of precipitation and temperature on aridity. Temperature is shown to have exerted a considerable and even dominant influence on moisture availability, resulting in elevated humidity during the last glacial period, despite significant reductions in precipitation amount.  相似文献   
15.
The Bauer microplate was an independent slab of oceanic lithosphere that from 17 Ma to 6 Ma grew from 1.4 × 105 km2 to 1.2 × 106 km2 between the rapidly diverging Pacific and Nazca plates. Growth was by accretion at the lengthening and overlapping axes of the (Bauer-Nazca) Galapagos Rise (GR) and the (Pacific-Bauer) East Pacific Rise (EPR). EPR and GR axial propagation to create and rapidly grow the counter-clockwise spinning microplate occurred in two phases: (1) 17–15Ma, when the EPR axis propagated north and the GR axis propagated south around a narrow (100- to 200-km-wide) core of older lithosphere; and (2) 8–6 Ma, when rapid northward propagation of the EPR axis resumed, overlapping ∼400 km of the fast-spreading Pacific-Nazca rise-crest and appending a large (200- to 400-km-wide) area of the west flank of that rise as a ‘northern annex’ to the microplate. Between 15 and 8 Ma the microplate grew principally by crustal accretion at the crest of its rises. The microplate was captured by the Nazca plate and the Galapagos Rise axis became extinct soon after 6 Ma, when the south end of the Pacific-Bauer EPR axis became aligned with the southern Pacific-Nazca EPR axis and its north end was linked by the Quebrada Transform to the northern Pacific-Nazca EPR axis. Incomplete multibeam bathymetry of the microplate margins, and of both flanks of the Pacific-Bauer and Bauer-Nazca Rises, together with archival magnetic and satellite altimetry data, clarifies the growth and (counter-clockwise) rotation of the microplate, and tests tectonic models derived from studies of the still active, much smaller, Easter and Juan Fernandez microplates. Our interpretations differ from model predictions in that Euler poles were not located on the microplate boundary, propagation in the 15–8 Ma phase of growth was not toward these poles, and microplate rotation rates were small (5°/m.y.) for much of its history, when long, bounding transform faults reduced coupling to Nazca plate motion. Some structures of the Bauer microplate boundary, such as deep rift valleys and a broad zone of thrust-faulted lithosphere, are, however, similar to those observed around the smaller, active microplates. Analysis of how the Bauer microplate was captured when coupling to the Pacific plate was reduced invites speculation on why risecrest microplates eventually lose their independence.  相似文献   
16.
For the reliable assessment of past climate variability, quantitative reconstructions of seasonal temperatures are required. Currently, reconstructions of cold‐season temperatures are scarce, because most biological proxies are biased towards the growing season. Here we test the potential of chrysophyte stomatocysts (or simply ‘cysts’; siliceous resting stages of the golden‐brown algae) as a proxy for cold‐season temperature. Climate reconstructions based on biological proxies are commonly constructed using transfer functions derived from calibration in space. However, the performance of these reconstructions is rarely tested by direct comparison with meteorological data due to limitations of sample resolution or chronological control. We compare a cyst‐based near‐annual reconstruction of ‘date of spring mixing’ from the varved sediments of Lake Silvaplana (Swiss Alps) spanning AD 1870–2004 with climate variables from the same period measured at the lake shore. The high correlation between cyst‐based ‘date of spring mixing’ and cold‐season temperature demonstrates the ability of chrysophyte cysts to archive cold‐season temperature variability. Lake eutrophication, which was extensive during the last 50 years, had no obvious effect on the cyst‐based reconstruction. This study underlines the high potential of chrysophyte cysts as a quantitative proxy for cold‐season climate reconstructions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
17.
18.
Evidence is presented for a previously unrecognized late Paleozoic orogeny in two parts of Alaska's Farewell terrane, an event that has not entered into published scenarios for the assembly of Alaska. The Farewell terrane was long regarded as a piece of the early Paleozoic passive margin of western Canada, but is now thought, instead, to have lain between the Siberian and Laurentian (North American) cratons during the early Paleozoic. Evidence for a late Paleozoic orogeny comes from two belts located 100–200 km apart. In the northern belt, metamorphic rocks dated at 284–285 Ma (three 40Ar/39Ar white-mica plateau ages) provide the main evidence for orogeny. The metamorphic rocks are interpreted as part of the hinterland of a late Paleozoic mountain belt, which we name the Browns Fork orogen. In the southern belt, thick accumulations of Pennsylvanian-Permian conglomerate and sandstone provide the main evidence for orogeny. These strata are interpreted as the eroded and deformed remnants of a late Paleozoic foreland basin, which we name the Dall Basin. We suggest that the Browns Fork orogen and Dall Basin comprise a matched pair formed during collision between the Farewell terrane and rocks to the west. The colliding object is largely buried beneath Late Cretaceous flysch to the west of the Farewell terrane, but may have included parts of the so-called Innoko terrane. The late Paleozoic convergent plate boundary represented by the Browns Fork orogen likely connected with other zones of plate convergence now located in Russia, elsewhere in Alaska, and in western Canada.  相似文献   
19.
Tectonic reconstructions based on the geodynamic analysis of geologic, paleomagnetic, structural and kinematic data of Cenozoic age from the western Bering Sea region are proposed in the present paper. The most active tectonic and magmatic processes took place in the Komandorsky segment of the Bering Sea, exemplified by the Late Cretaceous–Early Eocene Olutorsky Arc and Eocene–Oligocene Govena–Karaginsky Arc, which was built on the structures of the Olutorsky Arc. A model of the complex collision of these two arcs with the paleocontinental margin, which considers rotations of the geological blocks from the various structural zones of the western margin of the Bering Sea in the horizontal plane (paleomagnetic data), was proposed by the authors. According to this model the collision of the flanks of the Olutorsky and Govena–Karaginsky arcs took place in the Eocene, before the collision of the central parts in the Miocene.  相似文献   
20.
The Southern Alps host volcano-sedimentary basins that formed during post-Variscan extension and strike-slip in the Early Permian. We present U–Pb ages and initial Hf isotopic compositions of magmatic zircons from silicic tuffs and pyroclastic flows within these basins, from caldera fillings and from shallow intrusions from a 250 km long E–W transect (Bozen–Lugano–Lago Maggiore) and compare these with previously published data. Basin formation and magmatism are closely related to each other and occurred during a short time span between 285 and 275 Ma. The silicic magmatism is coeval with mafic intrusions of the Ivrea-Verbano Zone and within Austroalpine units. We conclude that deep magma generation, hybridisation and upper crustal emplacement occurred contemporaneously along the entire transect of the Southern Alps. The heat advection in the lower crust by injected mantle melts was sufficient to produce crustal partial melts in lower crustal levels. The resulting granitoid melts intruded into the upper crust or rose to the surface forming large caldera complexes. The compilation of Sr and Nd isotopic data of these rocks demonstrates that the mantle mixing endmember in the melts may not be geochemically enriched but has a depleted composition, comparable to the Adriatic subcontinental mantle exhumed to form the Tethyan sea floor during Mesozoic continental breakup and seafloor spreading. Magmatism and clastic sedimentation in the intracontinental basins was interrupted at 275 Ma for some 10–15 million years, forming a Middle Permian unconformity. This unconformity may have originated during large-scale strike-slip tectonics and erosion that was associated with crustal thinning, upwelling and partial melting of mantle, and advection of melts and heat into the crust. The unconformity indeed corresponds in time to the transition from a Pangea-B plate reconstruction for the Early Permian to the Late Permian Pangea-A plate assembly (Muttoni et al. in Earth Planet Sci Lett 215:379–394, 2003). The magmatic activity would therefore indicate the onset of >2,000 km of strike-slip movement along a continental-scale mega-shear, as their model suggests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号