首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21965篇
  免费   972篇
  国内免费   702篇
测绘学   559篇
大气科学   1092篇
地球物理   1261篇
地质学   2484篇
海洋学   503篇
天文学   16753篇
综合类   189篇
自然地理   798篇
  2024年   51篇
  2023年   97篇
  2022年   190篇
  2021年   164篇
  2020年   156篇
  2019年   232篇
  2018年   135篇
  2017年   126篇
  2016年   161篇
  2015年   298篇
  2014年   260篇
  2013年   283篇
  2012年   324篇
  2011年   347篇
  2010年   378篇
  2009年   1727篇
  2008年   1667篇
  2007年   1934篇
  2006年   1943篇
  2005年   1732篇
  2004年   1857篇
  2003年   1605篇
  2002年   1419篇
  2001年   1230篇
  2000年   1030篇
  1999年   983篇
  1998年   1131篇
  1997年   302篇
  1996年   171篇
  1995年   320篇
  1994年   336篇
  1993年   172篇
  1992年   98篇
  1991年   115篇
  1990年   99篇
  1989年   145篇
  1988年   99篇
  1987年   88篇
  1986年   80篇
  1985年   41篇
  1984年   29篇
  1983年   23篇
  1982年   5篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1905年   3篇
  1900年   3篇
  1897年   7篇
排序方式: 共有10000条查询结果,搜索用时 625 毫秒
501.
Phase equilibria simulations were performed on naturally quenchedbasaltic glasses to determine crystallization conditions priorto eruption of magmas at the Mid-Atlantic Ridge (MAR) east ofAscension Island (7–11°S). The results indicate thatmid-ocean ridge basalt (MORB) magmas beneath different segmentsof the MAR have crystallized over a wide range of pressures(100–900 MPa). However, each segment seems to have a specificcrystallization history. Nearly isobaric crystallization conditions(100–300 MPa) were obtained for the geochemically enrichedMORB magmas of the central segments, whereas normal (N)-MORBmagmas of the bounding segments are characterized by polybariccrystallization conditions (200–900 MPa). In addition,our results demonstrate close to anhydrous crystallization conditionsof N-MORBs, whereas geochemically enriched MORBs were successfullymodeled in the presence of 0·4–1 wt% H2O in theparental melts. These estimates are in agreement with direct(Fourier transform IR) measurements of H2O abundances in basalticglasses and melt inclusions for selected samples. Water contentsdetermined in the parental melts are in the range 0·04–0·09and 0·30–0·55 wt% H2O for depleted and enrichedMORBs, respectively. Our results are in general agreement (within±200 MPa) with previous approaches used to evaluate pressureestimates in MORB. However, the determination of pre-eruptiveconditions of MORBs, including temperature and water contentin addition to pressure, requires the improvement of magma crystallizationmodels to simulate liquid lines of descent in the presence ofsmall amounts of water. KEY WORDS: MORB; Mid-Atlantic Ridge; depth of crystallization; water abundances; phase equilibria calculations; cotectic crystallization; pressure estimates; polybaric fractionation  相似文献   
502.
Experiments with peridotite minerals in simple (MgO–Al2O3–SiO2,CaO–MgO–SiO2 and CaO–MgO–Al2O3–SiO2)and natural systems were conducted at 1300–1500°Cand 6–10 GPa using a multi-anvil apparatus. The experimentsin simple systems demonstrated consistency with previous lowerpressure experiments in belt and piston–cylinder set-ups.The analysis of spatial variations in pyroxene compositionswithin experimental samples was used to demonstrate that pressureand temperature variations within the samples were less than0·4 GPa and 50°C. Olivine capsules were used in natural-systemexperiments with two mineral mixtures: SC1 (olivine + high-Alorthopyroxene + high-Al clinopyroxene + spinel) and J4 (olivine+ low-Al orthopyroxene + low-Al clinopyroxene + garnet). Theexperiments produced olivine + orthopyroxene + garnet ±clinopyroxene assemblages, occasionally with magnesite and carbonate-richmelt. Equilibrium compositions were derived by the analysisof grain rims and evaluation of mineral zoning. They were comparedwith our previous experiments with the same starting mixturesat 2·8–6·0 GPa and the results from simplesystems. The compositions of minerals from experiments withnatural mixtures show smooth pressure and temperature dependencesup to a pressure of 8 GPa. The experiments at 9 and 10 GPa producedandradite-rich garnets and pyroxene compositions deviating fromthe trends defined by the lower pressure experiments (e.g. higherAl in orthopyroxene and Ca in clinopyroxene). This discrepancyis attributed to a higher degree of oxidation in the high-pressureexperiments and an orthopyroxene–high-P clinopyroxenephase transition at 9 GPa. Based on new and previous resultsin simple and natural systems, a new version of the Al-in-orthopyroxenebarometer is presented. The new barometer adequately reproducesexperimental pressures up to 8 GPa. KEY WORDS: garnet; mineral equilibrium; multi-anvil apparatus; orthopyroxene; geobarometry  相似文献   
503.
Pressures of Crystallization of Icelandic Magmas   总被引:1,自引:0,他引:1  
Iceland lies astride the Mid-Atlantic Ridge and was createdby seafloor spreading that began about 55 Ma. The crust is anomalouslythick (20–40 km), indicating higher melt productivityin the underlying mantle compared with normal ridge segmentsas a result of the presence of a mantle plume or upwelling centeredbeneath the northwestern edge of the Vatnajökull ice sheet.Seismic and volcanic activity is concentrated in 50 km wideneovolcanic or rift zones, which mark the subaerial Mid-AtlanticRidge, and in three flank zones. Geodetic and geophysical studiesprovide evidence for magma chambers located over a range ofdepths (1·5–21 km) in the crust, with shallow magmachambers beneath some volcanic centers (Katla, Grimsvötn,Eyjafjallajökull), and both shallow and deep chambers beneathothers (e.g. Krafla and Askja). We have compiled analyses ofbasalt glass with geochemical characteristics indicating crystallizationof ol–plag–cpx from 28 volcanic centers in the Western,Northern and Eastern rift zones as well as from the SouthernFlank Zone. Pressures of crystallization were calculated forthese glasses, and confirm that Icelandic magmas crystallizeover a wide range of pressures (0·001 to 1 GPa), equivalentto depths of 0–35 km. This range partly reflects crystallizationof melts en route to the surface, probably in dikes and conduits,after they leave intracrustal chambers. We find no evidencefor a shallow chamber beneath Katla, which probably indicatesthat the shallow chamber identified in other studies containssilica-rich magma rather than basalt. There is reasonably goodcorrelation between the depths of deep chambers (> 17 km)and geophysical estimates of Moho depth, indicating that magmaponds at the crust–mantle boundary. Shallow chambers (<7·1 km) are located in the upper crust, and probablyform at a level of neutral buoyancy. There are also discretechambers at intermediate depths (11 km beneath the rift zones),and there is strong evidence for cooling and crystallizing magmabodies or pockets throughout the middle and lower crust thatmight resemble a crystal mush. The results suggest that themiddle and lower crust is relatively hot and porous. It is suggestedthat crustal accretion occurs over a range of depths similarto those in recent models for accretionary processes at mid-oceanridges. The presence of multiple stacked chambers and hot, porouscrust suggests that magma evolution is complex and involvespolybaric crystallization, magma mixing, and assimilation. KEY WORDS: Iceland rift zones; cotectic crystallization; pressure; depth; magma chamber; volcanic glass  相似文献   
504.
Experimental phase equilibrium and trace element partitioningdata are reported for H2O-saturated mid-ocean ridge basalt at2·5 GPa, 750–900°C and oxygen fugacities atthe nickel–nickel oxide buffer. Garnet, omphacite andrutile are present at all temperatures. Amphibole and epidotedisappear as residual phases above 800°C; allanite appearsabove 750°C. The Na–Al-rich silicate glass presentin all run products is likely to have quenched from a supercriticalliquid. Trace element analyses of glasses demonstrate the importantcontrol exerted by residual minerals on liquid chemistry. Inaddition to garnet, which controls heavy rare earth elements(HREE) and Sc, and rutile, which controls Ti, Nb and Ta, allanitebuffers the light REE (LREE; La–Sm) contents of liquidsto relatively low levels and preferentially holds back Th relativeto U. In agreement with previous experimental and metamorphicstudies we propose that residual allanite plays a key role inselectively retaining trace elements in the slab during subduction.Experimental data and analyses of allanite-bearing volcanicrocks are used to derive a model for allanite solubility inliquids as a function of pressure, temperature, anhydrous liquidcomposition and LREE content. The large temperature dependenceof allanite solubility is very similar to that previously determinedfor monazite. Our model, fitted to 48 datapoints, retrievesLREE solubility (in ppm) to within a factor of 1· 40over a pressure range of 0–4 GPa, temperature range of700–1200°C and for liquids with anhydrous SiO2 contentsof 50–84 wt %. This uncertainty in LREE content is equivalentto a temperature uncertainty of only ± 27°C at 1000K, indicating the potential of allanite as a geothermometer.Silicic liquids from either basaltic or sedimentary protolithswill be saturated in allanite except for Ca-poor protolithsor at very high temperatures. For conventional subduction geothermsthe low solubility of LREE (+ Th) in liquids raises questionsabout the mechanism of LREE + Th transport from slab to wedge.It is suggested either that, locally, temperatures experiencedby the slab are high enough to eliminate allanite in the residueor that substantial volumes of H2O-rich fluids must pass throughthe mantle wedge prior to melting. The solubility of accessoryphases in fluids derived from subducted rocks can provide importantconstraints on subduction zone thermal structure. KEY WORDS: subduction; experimental petrology; allanite; solubility; supercritical liquid; eclogite  相似文献   
505.
Establishing the petrogenesis of volcanic and plutonic rocksis a key issue in unraveling the evolution of distinct subduction-relatedtectonic phases occurring along the South American margin. Thisis particularly true for Cenozoic times when large volumes ofmagma were produced in the Andean belt. In this study we havefocused on Oligo-Miocene magmatism in central Chile at 33°S.Our data include field and petrographic observations, whole-rockmajor and trace element analyses, U–Pb zircon dating,and Pb, Sr, and Hf isotope analyses of plagioclase, clinopyroxene,and zircon mineral separates. Combined with earlier dating resultsthe new zircon ages define a 28·8–5·2 Maperiod of plutonic and volcanic activity that ceased as a consequenceof flattening subduction of the Nazca–Farallon plate.Rare earth elements patterns are variable, with up to 92 timeschondrite concentrations for light rare earth elements yielding(La/Yb)N between 3·6 and 7·0, and an absence ofEu anomalies. Initial Pb isotope signatures are in the rangeof 18·358–19·023 for 206Pb/ 204Pb, 15·567–15·700for 207Pb/ 204Pb and 38·249–39·084 for 208Pb/204Pb. Initial 87Sr/ 86Sr are mostly in the range of 0·70369–0·70505,with two more radiogenic values at 0·7066. Initial Hfisotopic compositions of zircons yield exclusively positiveHfi ranging between + 6·9 and + 9·6. The newlydetermined initial isotope characteristics of the Oligo-Miocenemagmas suggest that the mantle source lithologies are differentfrom both those of Pacific mid-ocean ridge basalt and oceanisland basalt, plotting in the field of reference values forsubcontinental lithospheric mantle, characterized by moderatelarge ion lithophile element–high field strengh elementdepletion and high 238U/ 204Pb. A Hf model age of 2 Ga is estimatedfor the formation of the subcontinental mantle–continentalcrust assemblage in the region, suggesting that the initialSr and Pb isotope ratios inferred for the source of the Oligo-Mioceneparental magmas are the result of later Rb and U enrichmentcaused by mantle metasomatism. A time-integrated model Rb/Srof 0·039 and µ 16 are estimated for the sourceof the parental magmas, consistent with ratios measured in peridotitexenoliths from continental areas. Evolution from predominant(>90%) basaltic–gabbroic to andesitic–dioriticmagmas seems to involve a combination of (1) original traceelement differences in the metasomatized subcontinental mantle,(2) different degrees of partial melting and (3) fractionalcrystallization in the garnet- and spinel-peridotite stabilityfields. The genesis of more differentiated magmas reaching rhyolitic–graniticcompositions most probably also includes additional crystalfractionation at both shallow mantle depths and within the crust,possibly leading to some very minor assimilation of crustalmaterial. KEY WORDS: calc-alkaline magmatism; Oligo-Miocene; U–Pb dating; Sr–Pb–Hf isotopes; central Chile  相似文献   
506.
Klauea historical summit lavas have a wide range in matrix 18OVSMOWvalues (4·9–5·6) with lower values in rockserupted following a major summit collapse or eruptive hiatus.In contrast, 18O values for olivines in most of these lavasare nearly constant (5·1 ± 0·1). The disequilibriumbetween matrix and olivine 18O values in many samples indicatesthat the lower matrix values were acquired by the magma afterolivine growth, probably just before or during eruption. BothMauna Loa and Klauea basement rocks are the likely sources ofthe contamination, based on O, Pb and Sr isotope data. However,the extent of crustal contamination of Klauea historical magmasis probably minor (< 12%, depending on the assumed contaminant)and it is superimposed on a longer-term, cyclic geochemicalvariation that reflects source heterogeneity. Klauea's heterogeneoussource, which is well represented by the historical summit lavas,probably has magma 18O values within the normal mid-ocean ridgebasalt mantle range (5·4–5·8) based on thenew olivine 18O values. KEY WORDS: Hawaii; Klauea; basalt; oxygen isotopes; crustal contamination  相似文献   
507.
To investigate eclogite melting under mantle conditions, wehave performed a series of piston-cylinder experiments usinga homogeneous synthetic starting material (GA2) that is representativeof altered mid-ocean ridge basalt. Experiments were conductedat pressures of 3·0, 4·0 and 5·0 GPa andover a temperature range of 1200–1600°C. The subsolidusmineralogy of GA2 consists of garnet and clinopyroxene withminor quartz–coesite, rutile and feldspar. Solidus temperaturesare located at 1230°C at 3·0 GPa and 1300°C at5·0 GPa, giving a steep solidus slope of 30–40°C/GPa.Melting intervals are in excess of 200°C and increase withpressure up to 5·0 GPa. At 3·0 GPa feldspar, rutileand quartz are residual phases up to 40°C above the solidus,whereas at higher pressures feldspar and rutile are rapidlymelted out above the solidus. Garnet and clinopyroxene are theonly residual phases once melt fractions exceed 20% and garnetis the sole liquidus phase over the investigated pressure range.With increasing melt fraction garnet and clinopyroxene becomeprogressively more Mg-rich, whereas coexisting melts vary fromK-rich dacites at low degrees of melting to basaltic andesitesat high melt fractions. Increasing pressure tends to increasethe jadeite and Ca-eskolaite components in clinopyroxene andenhance the modal proportion of garnet at low melt fractions,which effects a marked reduction in the Al2O3 and Na2O contentof the melt with pressure. In contrast, the TiO2 and K2O contentsof the low-degree melts increase with increasing pressure; thusNa2O and K2O behave in a contrasted manner as a function ofpressure. Altered oceanic basalt is an important component ofcrust returned to the mantle via plate subduction, so GA2 maybe representative of one of many different mafic lithologiespresent in the upper mantle. During upwelling of heterogeneousmantle domains, these mafic rock-types may undergo extensivemelting at great depths, because of their low solidus temperaturescompared with mantle peridotite. Melt batches may be highlyvariable in composition depending on the composition and degreeof melting of the source, the depth of melting, and the degreeof magma mixing. Some of the eclogite-derived melts may alsoreact with and refertilize surrounding peridotite, which itselfmay partially melt with further upwelling. Such complex magma-genesisconditions may partly explain the wide spectrum of primitivemagma compositions found within oceanic basalt suites. KEY WORDS: eclogite; experimental petrology; mafic magmatism; mantle melting; oceanic basalts  相似文献   
508.
Beard  James S. 《Journal of Petrology》2008,49(5):1027-1041
If a magma is a hybrid of two (or more) isotopically distinctend-members, at least one of which is partially crystalline,separation of melt and crystals after hybridization will leadto the development of isotopic heterogeneities in the magmaas long as some of the pre-existing crystalline material (antecrysts)retains any of its original isotopic composition. This holdstrue whether the hybridization event is magma mixing as traditionallyconstrued, bulk assimilation, or melt assimilation. Once a magma-scaleisotopic heterogeneity is formed by crystal–melt separation,it is essentially permanent, persisting regardless of subsequentcrystallization, mixing, or equilibration events. The magnitudeof the isotopic variability resulting from crystal–meltseparation can be as large as that resulting from differentialcontamination, multiple isotopically distinct sources, or insitu isotopic evolution. In one model, a redistribution of one-thirdof the antecryst cargo yielded a crystal-enriched sample with87Sr/86Sr of 0·7058, whereas the complementary crystal-poorsample has 87Sr/86Sr of 0·7068. In other models, crystal-richsamples are enriched in radiogenic Sr. Isotopic heterogeneitiescan be either continuous (controlled by the modal distributionof crystals and melt) or discontinuous (when there is completeseparation of crystals and liquid). The first case may be exemplifiedby some isotopically zoned large-volume rhyolites, formed bythe eruptive inversion of a modally zoned magma chamber. Inthe latter case, the isotopic composition of any (for example)interstitial liquid will be distinct from the isotopic compositionof the bulk crystal fraction. The separation of such an interstitialliquid may explain the presence of isotopically distinct late-stageaplites in plutons. Crystal–melt separation provides anadditional option for the interpretation of isotopically zonedor heterogeneous magmas. This option is particularly attractivefor systems whose chemical variation is otherwise explicableby fractionation-dominated processes. Non-isotopic chemicalheterogeneities can also develop in this fashion. KEY WORDS: isotopic heterogeneity; zoning; hybrid magma; crystal separation; Sr isotopes; aplite; rhyolite  相似文献   
509.
A microanalytical trace element and geochronological study wascarried out on mafic amphibole-rich cumulates (quartz diorites)cropping out in northern Victoria Land (Antarctica). Associatedtonalites and basement rocks were also investigated. Rock texturesand major and trace element mineral compositions reveal thepresence in quartz diorites of two mineral assemblages: (1)clinopyroxene-I + brown amphibole ± dark mica; (2) clinopyroxene-II+ green amphibole + plagioclase + quartz. Both mineral assemblagescontain mafic phases with elevated Mg-number, but their traceelement signatures differ significantly. In situ U–Pbzircon geochronology was carried out to support petrogeneticand geological interpretations. Quartz diorites were emplacedin the mid-crust probably at 516 ± 3 Ma. Parental meltsof quartz diorites were computed by applying solid/liquid partitioncoefficients. The melt in equilibrium with the first mineralassemblage (melt-I) is extremely depleted in heavy rare earthelements (HREE), Y, Ti, Zr and Hf (at about 0·2 timesnormal mid-ocean ridge basalt) and enriched in B, Th, U, thelarge ion lithophile elements and light REE (LREE). It sharesmany similarities with sanukitic melts (e.g. Setouchi andesites),which originated by equilibration of subduction-derived sedimentmelts with a refractory mantle. The melt in equilibrium withthe second mineral assemblage (melt-II) is characterized bya steep LREE enrichment (LaN/YbN up to 39), a U-shaped HREEpattern and low Ti, which is depleted relative to HREE. Thetrace element signature of melt-II can be acquired through amphibolecrystallization starting from a sanukitic melt similar to melt-I,probably in a deeper magma chamber. Our results allow us toconstrain that melts from the subducted slab were produced ona regional scale, in accordance with literature data, belowa large sector of the east Gondwana margin during the mid-Cambrian.Implications for the role of amphibole in petrogenesis of subduction-relatedmagmas are also discussed. KEY WORDS: amphibole; sanukite; high-Mg andesites; Ross Orogeny; Antarctica  相似文献   
510.
The Upper Jurassic Tordillo Formation is exposed along the western edge of the Neuquén Basin (west central Argentina) and consists of fluvial strata deposited under arid/semiarid conditions. The pebble composition of conglomerates, mineralogical composition of sandstones and pelitic rocks, and major- and trace-element geochemistry of sandstones, mudstones, and primary pyroclastic deposits are evaluated to determine the provenance and tectonic setting of the sedimentary basin. Conglomerates and sandstones derived almost exclusively from volcanic sources. The stratigraphic sections to the south show a clast population of conglomerates dominated by silicic volcanic fragments and a predominance of feldspathic litharenites. This framework composition records erosion of Triassic–Jurassic synrift volcaniclastic rocks and basement rocks from the Huincul arch, which was exhumed as a result of Late Jurassic inversion. In the northwestern part of the study area, conglomerates show a large proportion of mafic and acidic volcanic rock fragments, and sandstones are characterised by a high content of mafic volcanic rock fragments and plagioclase. These data suggest that the source of the sandstones and conglomerates was primarily the Andean magmatic arc, located west of the Neuquén Basin. The clay mineral assemblage is interpreted as the result of a complex set of factors, including source rock, climate, transport, and diagenesis. Postdepositional processes produced significant variations in the original compositions, especially the fine-grained deposits. The Tordillo sediments are characterised by moderate SiO2 contents, variable abundances of K2O and Na2O, and a relatively high proportion of ferromagnesian elements. The degree of chemical weathering in the source area, expressed as the chemical index of alteration, is low to moderate. The major element geochemistry and Th/Sc, K/Rb, Co/Th, La/Sc, and Cr/Th values point to a significant input of detrital volcanic material of calcalkaline felsic and intermediate composition. However, major element geochemistry is not useful for interpreting the tectonic setting. Discrimination plots based on immobile trace elements, such as Ti, Zr, La, Sc, and Th, show that most data lie in the active continental margin field. Geochemical information is not sufficiently sensitive to differentiate the two different source areas recognized by petrographic and modal analyses of conglomerates and sandstones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号