首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22038篇
  免费   989篇
  国内免费   714篇
测绘学   568篇
大气科学   1106篇
地球物理   1285篇
地质学   2532篇
海洋学   509篇
天文学   16754篇
综合类   189篇
自然地理   798篇
  2024年   57篇
  2023年   110篇
  2022年   195篇
  2021年   172篇
  2020年   161篇
  2019年   236篇
  2018年   140篇
  2017年   128篇
  2016年   164篇
  2015年   302篇
  2014年   263篇
  2013年   284篇
  2012年   326篇
  2011年   347篇
  2010年   382篇
  2009年   1732篇
  2008年   1669篇
  2007年   1934篇
  2006年   1943篇
  2005年   1757篇
  2004年   1857篇
  2003年   1605篇
  2002年   1419篇
  2001年   1230篇
  2000年   1030篇
  1999年   984篇
  1998年   1132篇
  1997年   302篇
  1996年   171篇
  1995年   321篇
  1994年   336篇
  1993年   172篇
  1992年   98篇
  1991年   115篇
  1990年   100篇
  1989年   145篇
  1988年   100篇
  1987年   88篇
  1986年   80篇
  1985年   41篇
  1984年   29篇
  1983年   23篇
  1982年   5篇
  1980年   8篇
  1979年   4篇
  1978年   3篇
  1977年   7篇
  1905年   3篇
  1900年   3篇
  1897年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
381.
Sensitive high-resolution ion microprobe U–Pb dating showsthat a biotite orthogneiss from the Hercynian belt of westerncentral Iberia contains 1000–300 Ma zircon. Older, 1000–570Ma ages within this range represent inherited, detrital materialamong which four age components may be recognized:  相似文献   
382.
The fault-bounded Bolívar Ultramafic Complex (BUC) onthe eastern fringes of the Western Cordillera of Colombia wastectonically accreted onto the western coast of South Americain the late Cretaceous–early Tertiary, along with pillowbasalts of the Caribbean–Colombian Oceanic Plateau (CCOP).The complex consists of a lower sequence of ultramafic cumulates,successively overlain by layered and isotropic gabbroic rocks.The gabbros grade into, and are intruded by, mafic pegmatitesthat consist of large magnesiohornblende and plagioclase crystals.These pegmatites yield a weighted mean 40Ar–39Ar step-heatingage of 90·5 ± 0·9 Ma and thus coincidewith the timing of peak CCOP volcanism. The chemistry of theBUC is not consistent with a subduction-related origin. However,the similarity in Sr–Nd–Pb–Hf isotopes betweenthe CCOP and the BUC, in conjunction with their indistinguishableages, suggests that the BUC is an integral part of the plume-derivedCCOP. The parental magmas of the Bolívar complex wereprobably hydrous picrites that underwent 20–30% crystallization.The residual magmas from this fractionation contained  相似文献   
383.
This contribution aims to report the reflections we had with the scientific community during two international workshops on reference materials for stable isotopes in Davos (2002) and Nice (2003). After evaluating the isotopic homogeneity of some existing reference materials, based on either certificates, literature data or specific inter-laboratory rounds, we confirm these as primary reference materials or propose new ones relative to which stable isotope compositions should be reported. We propose DSM-3 for Mg, NIST SRM 915a for Ca, L-SVEC for Li and NBS28 for Si. Cadmium does not yet have a well identified delta zero material, although three commercial mono-elemental Cd solutions have yielded the same isotopic composition relative to one another. In order to scale the linearity of any mass spectrometer, some secondary reference materials are also proposed: Cambridge-1 solution for Mg, the "Münster-Cd" and JEPPIM Cd solutions for Cd and the "Big Batch" silicate for Si. The team from Nancy propose to prepare a mixed spike solution for Li isotopes. Well-characterised natural samples such as ocean or continental waters, diatoms, sponges, rocks and minerals are needed to validate the entire analytical procedure, particularly to take into account the effect of sample mineralisation and of chemical manipulations for elemental separation prior to analysis.  相似文献   
384.
The Li isotope ratios of four international rock reference materials, USGS BHVO-2, GSJ JB-2, JG-2, JA-1 and modern seawater (Mediterranean, Pacific and North Atlantic) were determined using multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). These reference materials of natural samples were chosen to span a considerable range in Li isotope ratios and cover several different matrices in order to provide a useful benchmark for future studies. Our new analytical technique achieves significantly higher precision and reproducibility (< ± O.3%o 2s) than previous methods, with the additional advantage of requiring very low sample masses of ca . 2 ng of Li.  相似文献   
385.
The deep structure of the gabbro–anorthosite–rapakivi granite (“AMCG-type”) Korosten Pluton (KP) in the northwestern Ukrainian Shield was studied by 3-D modelling of the gravity and magnetic fields together with previous seismic data. The KP occupies an area of ca. 12,500 km2 and comprises several layered gabbro-anorthositic intrusions enveloped by large volumes of rapakivi-type granitoids. Between 1.80 and 1.74 Ga, the emplacement of mafic and associated granitoid melts took place in several pulses. The 3-D geophysical reconstruction included: (a) modelling of the density distribution in the crust using the observed Bouguer anomaly field constrained by seismic data on Moho depth, and (b) modelling of the magnetic anomaly field in order to outline rock domains of various magnetisation, size and shape in the upper and lower crust. The density modelling was referred to three depth levels of 0 to 5, 5 to 18, and 18 km to Moho, respectively. The 3-D reconstruction demonstrates close links between the subsurface geology of the KP and the structure of the lower crust. The existence of a non-magnetic body with anomalously high seismic velocity and density is documented. Most plausibly, it represents a gabbroic stock (a parent magma chamber) with a vertical extent of ca. 20 km, penetrating the entire lower crust. This stock has a half-cylindrical shape and a diameter of ca. 90 km. It appears to be connected with a crust–mantle transitional lens previously discovered by EUROBRIDGE seismic profiling. The position of the stock relative to the subsurface outlines of the KP is somewhat asymmetric. This may be due to a connection between the magmatism and sets of opposite-dipping faults initially developed during late Palaeoproterozoic collisional deformation in the Sarmatian crustal segment. Continuing movements and disturbances of the upper mantle and the lower crust during post-collisional tectonic events between 1.80 and 1.74 Ga may account for the long-lived, recurrent AMCG magmatism.  相似文献   
386.
The Armutlu Peninsula and adjacent areas in NW Turkey play a critical role in tectonic reconstructions of the southern margin of Eurasia in NW Turkey. This region includes an inferred Intra-Pontide oceanic basin that rifted from Eurasia in Early Mesozoic time and closed by Late Cretaceous time. The Armutlu Peninsula is divisible into two metamorphic units. The first, the Armutlu Metamorphics, comprises a ?Precambrian high-grade metamorphic basement, unconformably overlain by a ?Palaeozoic low-grade, mixed siliciclastic/carbonate/volcanogenic succession, including bimodal volcanics of inferred extensional origin, with a possibly inherited subduction signature. The second unit, the low-grade znik Metamorphics, is interpreted as a Triassic rift infilled with terrigenous, calcareous and volcanogenic lithologies, including basalts of within-plate type. The Triassic rift was unconformably overlain by a subsiding Jurassic–Late Cretaceous (Cenomanian) passive margin including siliciclastic/carbonate turbidites, radiolarian cherts and manganese deposits. The margin later collapsed to form a flexural foredeep associated with the emplacement of ophiolitic rocks in Turonian time. Geochemical evidence from meta-basalt blocks within ophiolite-derived melange suggests a supra-subduction zone origin for the ophiolite. The above major tectonic units of the Armutlu Peninsula were sealed by a Maastrichtian unconformity. Comparative evidence comes from the separate Almacık Flake further east.Considering alternatives, it is concluded that a Mesozoic Intra-Pontide oceanic basin separated Eurasia from a Sakarya microcontinent, with a wider Northern Neotethys to the south. Lateral displacement of exotic terranes along the south-Eurasian continental margin probably also played a role, e.g. during Late Cretaceous suturing, in addition to overthrusting.  相似文献   
387.
We use lithosphere-scale gravity models to calculate gravity anomalies resulting from oceanic subduction, continental collision, slab steepening, delamination, and break-off. Local isostasy was assumed for determining vertical movements caused by mass changes related to these tectonic processes. Our results show that subduction is accompanied by basin subsidence on the upper plate caused by the heavy lithospheric root of the subducting slab. The basin evolution goes parallel with the slab evolution and shows considerable modifications when the processes at depth change (slab steepening, delamination, break-off). Characteristic gravity anomaly curves were acquired for the different tectonic scenarios. These curves together with other data (e.g. basin evolution on the upper and the lower plate) were used for the reconstruction of the tectonic evolution of the SE-Carpathians which includes Tertiary subduction and collision followed by slab steepening and delamination.  相似文献   
388.
Zircons in basement rocks from the eastern Wyoming province (Black Hills, South Dakota, USA) have been analyzed by ion microprobe (SHRIMP) in order to determine precise ages of Archean tectonomagmatic events. In the northern Black Hills (NBH) near Nemo, Phanerozoic and Proterozoic (meta)sedimentary rocks are nonconformably underlain by Archean biotite–feldspar gneiss (BFG) and Little Elk gneissic granite (LEG), both of which intrude older schists. The Archean granitoid gneisses exhibit a pervasive NW–SE-trending fabric, whereas an earlier NE–SW-trending fabric occurs sporadically only in the BFG, which is intruded by the somewhat younger LEG. Zircon crystals obtained from the LEG and BFG exhibit double terminations, oscillatory zoning, and Th/U ratios of 0.6±0.3—thereby confirming a magmatic origin for both lithologies. In situ analysis of the most U–Pb concordant domains yields equivalent 207Pb/206Pb ages (upper intercept, U–Pb concordia) of 2559±6 and 2563±6 Ma (both ±2σ) for the LEG and BFG, respectively, which constrains a late Neoarchean age for sequential pulses of magmatism in the NBH. Unzoned (in BSE) patches of 2560 Ma zircon commonly truncate coeval zonation in the same crystals with no change in Th/U ratio, suggesting that deuteric, fluid-assisted recrystallization accompanied post-magmatic cooling. A xenocrystic core of magmatic zircon observed in one LEG zircon yields a concordant age of 2894±6 Ma (±2σ). This xenocryst represents the oldest crustal material reported thus far in the Black Hills. Whether this older zircon originated as unmelted residue of 2900 Ma crust that potentially underlies the Black Hills or as detritus derived from 2900 Ma crustal sources in the Wyoming province cannot be discerned. In the southern Black Hills (SBH), the peraluminous granite at Bear Mountain (BMG) of previously unknown age intrudes biotite–plagioclase schist. Zircon crystals from the BMG are highly metamict and altered, but locally preserve small domains suitable for in situ analysis. A U–Pb concordia upper intercept age of 2596±11 Ma (±2σ) obtained for zircon confirms both the late Neoarchean magmatic age of the BMG and a minimum age for the schist it intrudes. Taken together, these data indicate that the Neoarchean basement granitoids were emplaced at 2590–2600 Ma (SBH) and 2560 Ma (NBH), most likely in response to subduction associated with plate convergence (final assembly of supercontinent Kenorland?). In contrast, thin rims present on some LEG–BFG zircons exhibit strong U–Pb discordance, high common Pb, and low Th/U ratios—suggesting growth or modification under hydrothermal conditions, as previously suggested for similar zircons from SE Wyoming. The LEG–BFG zircon rims yield a nominal upper intercept date of 1940–2180 Ma, which may represent a composite of multiple rifting events known to have affected the Nemo area between 2480 and 1960 Ma. Together, these observations confirm the existence of a Paleoproterozoic rift margin along the easternmost Wyoming craton. Moreover, the 2480–1960 Ma time frame inferred for rifting in the Black Hills (Nemo area) corresponds closely to a 2450–2100 Ma time frame previously inferred for the fragmentation of supercontinent Kenorland.  相似文献   
389.
R. A. Forth   《Engineering Geology》2004,72(3-4):253-260
Consideration of groundwater is a key element in almost every construction project. The design of deep excavations for basements or underground railway station concourses below the water table require that the water pressures are taken into account. Whilst these can be considered to be hydrostatic in soil, the decreasing permeability of rock with depth and the fact that groundwater flow is invariably along discrete fractures means that the water pressure is unlikely to be hydrostatic at depth.

Groundwater control for deep excavations can be achieved by a number of methods such as grouting, pumping or structural walls or a combination of these. For tunnelling projects grouting is extensively used, but the development of sophisticated tunnelling machines has led in many cases to the demise of compressed air as a means of groundwater control.  相似文献   

390.
Ultrasonic measurements of compressional and shear wave velocities under hydrostatic pressure up to 70 MPa were carried out on cylindrical specimens cored across and along the foliation planes. Our measurements revealed that the foliation of the metamorphic rocks induces a clear velocity anisotropy between two orthogonal directions; faster along the foliation plane and slower across the plane in most rock types. All velocity components monotonically increase with the confining pressure, probably due to the closure of microcracks distributed in rock specimens. We determined the complete set of dynamic moduli of foliated metamorphic rocks with two assumptions; transverse isotropy due to the foliation and ellipsoidal seismic energy propagation from a point source. The calculated elastic moduli referring to different directions could be valuable for the design of various engineering structures in planar textured rock mass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号