首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3732篇
  免费   559篇
  国内免费   1196篇
测绘学   426篇
大气科学   2188篇
地球物理   472篇
地质学   487篇
海洋学   285篇
天文学   1349篇
综合类   144篇
自然地理   136篇
  2024年   28篇
  2023年   103篇
  2022年   123篇
  2021年   147篇
  2020年   164篇
  2019年   201篇
  2018年   127篇
  2017年   159篇
  2016年   144篇
  2015年   171篇
  2014年   219篇
  2013年   222篇
  2012年   218篇
  2011年   247篇
  2010年   244篇
  2009年   361篇
  2008年   331篇
  2007年   374篇
  2006年   328篇
  2005年   261篇
  2004年   255篇
  2003年   224篇
  2002年   133篇
  2001年   144篇
  2000年   111篇
  1999年   98篇
  1998年   84篇
  1997年   49篇
  1996年   41篇
  1995年   35篇
  1994年   24篇
  1993年   31篇
  1992年   16篇
  1991年   17篇
  1990年   16篇
  1989年   7篇
  1988年   6篇
  1987年   6篇
  1986年   2篇
  1985年   9篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1954年   1篇
排序方式: 共有5487条查询结果,搜索用时 15 毫秒
111.
SWAN, the all-sky hydrogen Lyman-alpha camera on the SOHO spacecraft, designed primarily to image the interplanetary neutral hydrogen around the Sun, also observes comets continuously over large portions of their apparitions to the north and south of the ecliptic and at small solar elongation angles. Because of SOHO’s location at the L1 Lagrange point, analysis of SWAN images provides excellent temporal coverage of water production. We report here our results of observations of some interesting target comets selected from the extensive SWAN archive. These include three Oort Cloud Comets C/2002 V1 (NEAT), C/2002 X5 (Kudo–Fujikawa), C/2006 P1 (McNaught) and three apparitions of atypical short-period Comet 96P/Machholz 1. The common aspect of these four comets is their small perihelion distances, which are 0.19, 0.09, 0.17, and 0.12 AU, respectively. Their water production rates over their whole apparitions can be approximated by power laws in heliocentric distance (r in AU) as follows: 1.3 × 1029 r−2.1 s−1 for C/2002 V1 (NEAT), 7.5 × 1028 r−2.0 s−1 for C/2002 X5 (Kudo–Fujikawa), 5.4 × 1029 r−2.4 s−1 for C/2006 (P1 McNaught) and 4.6 × 1027 r−2.1 s−1 for 96P/Machholz 1. We also present daily-average water production rates for the long-period comets over long continuous time periods. We examine these results in light of our growing survey of comets that is yielding some interesting comparisons of water production rate variations with heliocentric distance and taxonomic classes.  相似文献   
112.
We report a comprehensive review of the UV–visible spectrum and rotational lightcurve of Vesta combining new observations by Hubble Space Telescope and Swift Gamma-ray Burst Observatory with archival International Ultraviolet Explorer observations. The geometric albedos of Vesta from 220 nm to 953 nm are derived by carefully comparing these observations from various instruments at different times and observing geometries. Vesta has a rotationally averaged geometric albedo of 0.09 at 250 nm, 0.14 at 300 nm, 0.26 at 373 nm, 0.38 at 673 nm, and 0.30 at 950 nm. The linear spectral slope as measured between 240 and 320 nm in the ultraviolet displays a sharp minimum near a sub-Earth longitude of 20°, and maximum in the eastern hemisphere. This is consistent with the longitudinal distribution of the spectral slope in the visible wavelength. The photometric uncertainty in the ultraviolet is ∼20%, and in the visible wavelengths it is better than 10%. The amplitude of Vesta’s rotational lightcurves is ∼10% throughout the range of wavelengths we observed, but is smaller at 950 nm (∼6%) near the 1-μm band center. Contrary to earlier reports, we found no evidence for any difference between the phasing of the ultraviolet and visible/near-infrared lightcurves with respect to sub-Earth longitude. Vesta’s average spectrum between 220 and 950 nm can well be described by measured reflectance spectra of fine particle howardite-like materials of basaltic achondrite meteorites. Combining this with the in-phase behavior of the ultraviolet, visible, and near-infrared lightcurves, and the spectral slopes with respect to the rotational phase, we conclude that there is no global ultraviolet/visible reversal on Vesta. Consequently, this implies a lack of global space weathering on Vesta, as previously inferred from visible–near-infrared data.  相似文献   
113.
114.
115.
We present profiles of the line-of-sight (l.o.s.) ionospheric wind velocities in the southern auroral/polar region of Saturn. Our velocities are derived from the measurement of Doppler shifting of the H3+ν2Q(1,0) line at 3.953 microns. The data for this study were obtained using the facility high-resolution spectrometer CSHELL on the NASA Infrared Telescope Facility (IRTF) on Mauna Kea, Hawaii, during the night of February 6, 2003 (UT). The l.o.s. velocity profiles finally derived are consistent with an extended region of the upper atmosphere sub-corotating with the planet: the ion velocities in the inertial reference are only 1/3 of those expected for full planetary corotation. We discuss the results in the light of recent proposals for the kronian magnetosphere, and suggest that, in this region, Saturn's ion winds may be under solar wind control.  相似文献   
116.
Between 1999 and 2002, the Galileo spacecraft made 6 close flybys of Io during which many observations of Io's thermal radiation were made with the photopolarimeter-radiometer (PPR). While the NIMS instrument could measure thermal emission from hot spots with T>200 K, PPR was the only Galileo instrument capable of mapping the lower temperatures of older, cooling lava flows, and the passive background. We tabulate all data taken by PPR of Io during these flybys and describe some scientific highlights revealed by the data. The data include almost complete coverage of Io at better than 250 km resolution, with extensive regional coverage at higher resolutions. We found a modest poleward drop in nighttime background temperatures and evidence of thermal inertia variations across the surface. Comparison of high spatial resolution temperature measurements with observed daytime SO2 gas pressures on Io provides evidence for local cold trapping of SO2 frost on scales smaller than the 60 km resolution of the PPR data. We also calculated the power output from several hot spots and estimated total global heat flow to be about 2.0-2.6 W m−2. The low-latitude diurnal temperature variations for the regions between obvious hot spots are well matched by a laterally-inhomogeneous thermal model with less than 1 W m−2 endogenic heat flow.  相似文献   
117.
We present results from 14 nights of observations of Titan in 1996-1998 using near-infrared (centered at 2.1 microns) speckle imaging at the 10-meter W.M. Keck Telescope. The observations have a spatial resolution of 0.06 arcseconds. We detect bright clouds on three days in October 1998, with a brightness about 0.5% of the brightness of Titan. Using a 16-stream radiative transfer model (DISORT) to model the central equatorial longitude of each image, we construct a suite of surface albedo models parameterized by the optical depth of Titan's hydrocarbon haze layer. From this we conclude that Titan's equatorial surface albedo has plausible values in the range of 0-0.20. Titan's minimum haze optical depth cannot be constrained from this modeling, but an upper limit of 0.3 at this wavelength range is found. More accurate determination of Titan's surface albedo and haze optical depth, especially at higher latitudes, will require a model that fully considers the 3-dimensional nature of Titan's atmosphere.  相似文献   
118.
We present a new Very Large Array (VLA) image of Saturn, made from data taken in October 1998 at a wavelength of λ3.6 cm. The moderate ring opening angle (B≈15°) allows us to explore direct transmission of microwave photons through the A and C rings. We find a strong asymmetry of photons transmitted through the A ring, but not in the C ring, a new diagnostic of wake structure in the ring particles. We also find a weak asymmetry between east and west for the far side of the ansae. To facilitate quantitative comparison between dynamic models of the A ring and radio observations, we extend our Monte Carlo radiative transfer code (described in Dunn et al., 2002, Icarus 160, 132-160) to include idealized wakes. We show the idealized model can reproduce the properties of dynamic simulations in directly transmitted light. We examine the model behavior in directly transmitted and scattered light over a range of physical and geometric wake parameters. Finally, we present a wake model with a plausible set of physical parameters that quantitatively reproduces the observed intensity and asymmetry of the A ring both across the planet and in the ansae.  相似文献   
119.
We report on spectro-imaging infrared observations of Jupiter's auroral zones, acquired in October 1999 and October 2000 with the FTS/BEAR instrument at the Canada-France-Hawaii Telescope. The use of narrow-band filters at 2.09 and 2.12 μm, combined with high spectral resolution (0.2 cm−1), allowed us to map emission from the H2S1(1) quadrupole line and from several H3+ lines. The H2 and H3+ emission appears to be morphologically different, especially in the north, where the latter notably exhibits a “hot spot” near 150°-170° System III longitude. This hot spot coincides in position with the region of increased and variable hydrocarbon, FUV and X-ray emission, but is not seen in the more uniform H2S1(1) emission. We also present the first images of the H2 emission in the southern polar region. The spectra include a total of 14 H3+ lines, including two hot lines from the 3ν2-ν2 band, detected on Jupiter for the first time. They can be used to determine H3+ column densities, rotational (Trot) and vibrational (Tvib) temperatures. We find the mean Tvib of the v2=3 state to be lower (960±50 K) than the mean Trot in v2=2 (1170±75 K), indicating an underpopulation of the v2=3 level with respect to local thermodynamical equilibrium. Rotational temperatures and associated column densities are generally higher and lower, respectively, than inferred previously from ν2 observations. This is a likely consequence of a large positive temperature gradient in the sub-microbar auroral atmosphere. While the signal-to-noise is not sufficient to take full advantage of the 2-D capabilities of the observations, the search for correlations between line intensities, Tvib and column densities, indicates that variations in line intensities are mostly due to correlated variations in the H3+ column densities. The thermostatic role played by H3+ at ionospheric levels may provide an explanation. The exception is the northern “hot spot,” which exhibits a Tvib about 250 K higher than other regions. A partial explanation might invoke a homopause elevation in this region, but a fully consistent scenario is not yet available. The different distributions of the H2 and H3+ emission are equally difficult to explain.  相似文献   
120.
Hydrogen peroxide (H2O2) has been suggested as a possible oxidizer of the martian surface. Photochemical models predict a mean column density in the range of 1015-1016 cm−2. However, a stringent upper limit of the H2O2 abundance on Mars (9×1014 cm−2) was derived in February 2001 from ground-based infrared spectroscopy, at a time corresponding to a maximum water vapor abundance in the northern summer (30 pr. μm, Ls=112°). Here we report the detection of H2O2 on Mars in June 2003, and its mapping over the martian disk using the same technique, during the southern spring (Ls=206°) when the global water vapor abundance was ∼10 pr. μm. The spatial distribution of H2O2 shows a maximum in the morning around the sub-solar latitude. The mean H2O2 column density (6×1015 cm−2) is significantly greater than our previous upper limit, pointing to seasonal variations. Our new result is globally consistent with the predictions of photochemical models, and also with submillimeter ground-based measurements obtained in September 2003 (Ls=254°), averaged over the martian disk (Clancy et al., 2004, Icarus 168, 116-121).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号