利用青藏高原非均匀下垫面热力输送系数及地表有效辐射的EOF分析结果,计算了2000年以来的高原地表非绝热加热资料,并将1958—2013年地表非绝热加热资料进行重建得到高原地表非绝热加热指数,以表征高原不同气候分区的地表热力状况。根据EOF分析结果将高原分为4个气候区,并从波能传播的角度分析其对中国北方环流异常的影响。结果表明,高原地表非绝热加热指数在西部边缘(气候Ⅰ区),除了冬季为微弱下降趋势以外,其他季节都为微弱的上升趋势;在高原中西部腹地(气候Ⅱ区),四季均为下降趋势;在高原东北部(气候Ⅲ区),除了冬季表现为微弱的下降趋势外,其他季节均为微弱的上升趋势;而在高原东南部(气候Ⅳ区),四季均表现为下降趋势。高原西部边缘地表非绝热加热异常增强时,高原200 h Pa上空为波能辐散区,并向东传播,初夏在北方辐合加强,有利于降水,干旱减弱;盛夏在北方地区处于辐散区,加剧干旱。在高原东北部地表非绝热加热异常增强时,该区200 h Pa上空为波能辐散区,并向东传播,无论是在初夏还是盛夏,除了东北地区北部,北方其他地区辐合加强,有助于干旱减弱。 相似文献
In this study, we investigate the influence of low-frequency solar forcing on the East Asian winter monsoon(EAWM)by analyzing a four-member ensemble of 600-year simulations performed with Had CM3(Hadley Centre Coupled Model,version 3). We find that the EAWM is strengthened when total solar irradiance(TSI) increases on the multidecadal time scale. The model results indicate that positive TSI anomalies can result in the weakening of Atlantic meridional overturning circulation, causing negative sea surface temperature(SST) anomalies in the North Atlantic. Especially for the subtropical North Atlantic, the negative SST anomalies can excite an anomalous Rossby wave train that moves from the subtropical North Atlantic to the Greenland Sea and finally to Siberia. In this process, the positive sea-ice feedback over the Greenland Sea further enhances the Rossby wave. The wave train can reach the Siberian region, and strengthen the Siberian high. As a result, low-level East Asian winter circulation is strengthened and the surface air temperature in East Asia decreases. Overall,when solar forcing is stronger on the multidecadal time scale, the EAWM is typically stronger than normal. Finally, a similar linkage can be observed between the EAWM and solar forcing during the period 1850–1970. 相似文献