首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   37篇
  国内免费   66篇
测绘学   4篇
大气科学   56篇
地球物理   28篇
地质学   56篇
海洋学   105篇
天文学   31篇
综合类   13篇
自然地理   13篇
  2023年   2篇
  2022年   3篇
  2021年   7篇
  2020年   12篇
  2019年   12篇
  2018年   14篇
  2017年   16篇
  2016年   14篇
  2015年   11篇
  2014年   6篇
  2013年   9篇
  2012年   7篇
  2011年   10篇
  2010年   6篇
  2009年   15篇
  2008年   13篇
  2007年   14篇
  2006年   15篇
  2005年   10篇
  2004年   12篇
  2003年   5篇
  2002年   13篇
  2001年   7篇
  2000年   8篇
  1999年   5篇
  1998年   8篇
  1997年   5篇
  1996年   11篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有306条查询结果,搜索用时 265 毫秒
61.
柳成林  刘海笑  赵燕兵  王宸 《岩土力学》2013,34(11):3221-3228
由于在抗拔承载力和深水安装中的优势,拖曳锚在深水系泊系统中具有良好的发展前景。在拖曳锚安装过程中,安装缆绳和锚之间存在复杂的相互作用,安装缆绳在海床土中的反悬链形态将直接影响锚的嵌入和运动,对反悬链形态的研究有助于提高锚的嵌入性能、准确预测锚的运动轨迹以及解决锚在安装中的精确定位问题。基于嵌入缆单元在海床土中的力学模型,推导出适用于黏性土和无黏性土的反悬链方程,利用该方程可求出安装缆绳在海床土中的反悬链形态;通过在缆绳上布置倾角传感器并运用圆弧递推方法,设计出可实时测量嵌入缆形态的试验技术,为验证试验技术的合理性,在空气中分别选取3种典型缆绳形态进行模拟,结果表明:模拟形态与真实形态吻合良好,并具有较高精度;利用实时测量技术开展模型试验,对反悬链方程进行了考察,验证了其模拟嵌入缆反悬链形态的精度,并获取了对拖曳锚安装过程中反悬链形态变化规律的直观认识。  相似文献   
62.
Based on the equations of planar motion with drag used in point dynamics, a simple derivation is presented that shows how a constant Keplerian (elliptical) orbit can be obtained with a non-central force field and variable angular momentum.  相似文献   
63.
将力学中的Hamilton原理推广于曲线拟合,提出了一种曲线拟合的新方法——应用Hamilton原理作曲线拟合,并以泥沙阻力系数为例,具体说明了本原理的应用.  相似文献   
64.
Gravity installed anchors (GIAs) are released from a height of 30–150 m above the seabed, achieving velocities up to 19–35 m/s at the seabed, and embed to depths of 1.0–2.4 times the anchor length. Challenges associated with GIAs include the prediction of anchor initial embedment depth, which determines the holding capacity of the anchor. Based on the coupled Eulerian–Lagrangian approach, a numerical framework is proposed in this paper to predict the embedment depth of GIAs, considering the effects of soil strain rate, soil strain-softening and hydrodynamic drag (modeled using a concentrated force), with the anchor-soil friction described appropriately. GIAs are influenced by the hydrodynamic drag before penetrating into the soil completely, hence the anchor accelerates less than the previous investigations in shallow penetration, even decelerates directly at the terminal impact velocity. The hydrodynamic drag has more influence on OMNI-Max anchors (with an error of ∼4.5%) than torpedo anchors, and the effect becomes more significant with increasing impact velocity. An extensive parametric study is carried out by varying the impact velocity, strain rate and strain-softening parameters, frictional coefficient, and soil undrained shear strength. It is concluded that the dominant factor affecting the penetration is the soil undrained shear strength, then are the impact velocity, strain rate dependency and frictional coefficient, and the minimal is the strain-softening of soil. In addition, although the strain rate dependency is partly compensated by the softening, the anchor embedment depth accounting for the effects of strain rate and strain-softening is lower than that for ideal Tresca soil. Strain rate dependency dominates the combined effects of strain rate and strain-softening in the dynamic installation of GIAs, on which should pay more attention, especially for the calibration of the related parameters and the measured solutions. In the end, the theoretical model based on the bearing resistance method is extended by accounting for the hydrodynamic drag effect.  相似文献   
65.
A design of semi-submersible platform is mainly based on the extreme response analysis due to the forces experienced by the components during lifetime. The external loads can induce the extreme air gap response and potential deck impact to the semi-submersible platform. It is important to predict air gap response of platforms accurately in order to check the strength of local structures which withstand the wave slamming due to negative air gap. The wind load cannot be simulated easily by model test in towing tank whereas it can be simulated accurately in wind tunnel test. Furthermore, full scale simulation of the mooring system in model test is still a tuff work especially the stiffness of the mooring system. Owing to the above mentioned problem, the model test results are not accurate enough for air gap evaluation. The aim of this paper is to present sensitivity analysis results of air gap motion with respect to the mooring system and wind load for the design of semi-submersible platform. Though the model test results are not suitable for the direct evaluation of air gap, they can be used as a good basis for tuning the radiation damping and viscous drag in numerical simulation. In the presented design example, a numerical model is tuned and validated by ANSYS AQWA based on the model test results with a simple 4 line symmetrical horizontal soft mooring system. According to the tuned numerical model, sensitivity analysis studies of air gap motion with respect to the mooring system and wind load are performed in time domain. Three mooring systems and five simulation cases about the presented platform are simulated based on the results of wind tunnel tests and sea-keeping tests. The sensitivity analysis results are valuable for the floating platform design.  相似文献   
66.
海面阻力系数的流体力学研究   总被引:1,自引:0,他引:1  
利用相似理论的方法 ,把湍流问题的尼古拉兹曲线引入到风应力中 ,阐明了决定海面阻力系数的关键因素 ,并提出了阻力系数和有效波高的关系。  相似文献   
67.
南海的季节与年平均风应力   总被引:2,自引:0,他引:2  
本文根据1982年中国近海及西北太平洋气候图集的风玫瑰资料计算南海各季与年平均风应力场。初步揭示了南海风应力的分布特征与其季节变化规律。  相似文献   
68.
The relationship between form drag and the zonal mean velocity of steady states is investigated in a very simple system; a barotropic quasi-geostrophic β channel with sinusoidal topography. When a steady solution is calculated by the modified Marquardt method, keeping the zonal mean velocity constant as a parameter, the characteristic of the solution changes at a phase speed of a wave with a wavenumber higher than that of the bottom topography. For velocities smaller than this critical value, there exists a stable quasi-linear solution similar to the linear solution. For larger velocities, there exist three solutions whose form drag is very large. In addition, the resonant velocity of the mode, whose wavenumber is the same as the bottom topography, has no effect on these solutions. When the quiescent fluid is accelerated by a constant wind stress, acceleration stops around the critical velocity for a wide range of the wind stress. If the wind stress is too large for the acceleration to stop, the zonal current speed continues to increase infinitely. It is implied that the zonal velocity of equilibrium is mainly determined, not by the wind stress, but by the amplitude of the bottom topography and the viscosity coefficient.  相似文献   
69.
The effect of biofouling on the hydrodynamic characteristics of the net cage is of particular interest as biofouled nettings can significantly reduce flow of well-oxygenated water reaching the stocked fish. For computational efficiency, the porous-media fluid model is proposed to simulate flow through the biofouled plane net and full-scale net cage. The porous coefficients of the porous-media fluid model can be determined from the quadratic-function relationship between the hydrodynamic forces on a plane net and the flow velocity using the least squares method. In this study, drag forces on and flow fields around five plane nets with different levels of biofouling are calculated by use of the proposed model. The numerical results are compared with the experimental data of Swift et al. (2006) and the effectiveness of the numerical model is presented. On that basis, flow through full-scale net cages with the same level of biofouling as the tested plane nets are modeled. The flow fields inside and around biofouled net cages are analyzed and the drag force acting on a net cage is estimated by a control volume analysis method. According to the numerical results, empirical formulas of reduction in flow velocity and load on a net cage are derived as function of drag coefficient of the corresponding biofouled netting.  相似文献   
70.
A new non-singular analytical theory for the motion of near-Earth satellite orbits with the air drag effect is developed in terms of uniformly regular KS canonical elements. Diurnally varying oblate atmosphere is considered with variation in density scale height dependent on altitude. The series expansion method is utilized to generate the analytical solutions and terms up to fourth-order terms in eccentricity and c (a small parameter dependent on the flattening of the atmosphere) are retained. Only two of the nine equations are solved analytically to compute the state vector and change in energy at the end of each revolution, due to symmetry in the equations of motion. The important drag perturbed orbital parameters: semi-major axis and eccentricity are obtained up to 500 revolutions, with the present analytical theory and by numerical integration over a wide range of perigee height, eccentricity and inclination. The differences between the two are found to be very less. A comparison between the theories generated with terms up to third- and fourth-order terms in c and e shows an improvement in the computation of the orbital parameters semi-major axis and eccentricity, up to 9%. The theory can be effectively used for the re-entry of the near-Earth objects, which mainly decay due to atmospheric drag.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号