首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   541篇
  免费   133篇
  国内免费   43篇
测绘学   155篇
大气科学   16篇
地球物理   161篇
地质学   63篇
海洋学   184篇
天文学   38篇
综合类   32篇
自然地理   68篇
  2023年   7篇
  2022年   9篇
  2021年   18篇
  2020年   17篇
  2019年   30篇
  2018年   18篇
  2017年   22篇
  2016年   18篇
  2015年   21篇
  2014年   42篇
  2013年   49篇
  2012年   48篇
  2011年   52篇
  2010年   29篇
  2009年   39篇
  2008年   29篇
  2007年   53篇
  2006年   53篇
  2005年   18篇
  2004年   33篇
  2003年   36篇
  2002年   12篇
  2001年   9篇
  2000年   16篇
  1999年   9篇
  1998年   2篇
  1997年   3篇
  1996年   7篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1979年   1篇
排序方式: 共有717条查询结果,搜索用时 46 毫秒
631.
多波束测深系统声速校正   总被引:13,自引:0,他引:13  
海水声速是多波束测深系统进行水深测量的基本参数之一,声速剖面正确与否直接影响测量结果的精度和可靠性。声速校正为多波束测深系统提供了正确的声速剖面,根据声速剖面垂向上的变化规律,对原始声速数据进行科学采点,运用软件方法或实验方法对声速剖面进行编辑获得声速数据,最终取得合理可靠的水深值。这里对南海SA12试验区采集的声速资料进行了分析,以SeaBeam2100多波速测深系统为例,对声速校正的技术方法进行了探讨。  相似文献   
632.
通过对Em系列多波束测深系统原始数据结构分析,提出了从原始测量数据中提取各种测量数据的技术方法,并编程实现了该方法。该技术方法对多波束测量数据的分析处理有重要的意义。  相似文献   
633.
西沙海槽海域地形地貌特征及成因   总被引:2,自引:0,他引:2  
应用多波束测量资料绘制了详细的西沙海槽海域地形图、地貌图,并把研究区划分为3个地貌单元。其中陆坡斜坡位于北部,呈北东向延伸,地形较为简单,斜坡面单一平整,地貌类型单一,主要为堆积型斜坡;西沙海槽位于中部,呈北东东向延伸,地形起伏较大,主要由槽底平原和槽坡组成,且在槽坡上发育陡坎、冲刷沟谷、阶地等次一级地貌类型;西沙海台位于南部,呈近东西向展布,地形变化复杂,地貌类型众多,表现为海山、海丘、小台地、洼地等相间排列的波状起伏的地貌特征。地貌形成与演化主要受南海新生代两次海底扩张控制。第1次海底扩张期间,西沙海槽可能已开始发生张裂。第2次海底扩张期间,西沙海槽分3个阶段发生张裂断陷,而且其强弱在东西方向上差别巨大,致使形成了现今东深西浅、东窄西宽、槽壁陡峭的近东西向延伸的海槽地貌,奠定了研究区内地貌的基本轮廓。而地质构造、火山活动、海平面变化等内外营力的共同作用则控制次级地貌类型的形成与演化。  相似文献   
634.
采用差分GPS、多波束测深系统、侧扫声纳和水下三维地理信息系统等一系列海洋测量新设备,完成了2010上海世博园区的水下扫测,对以后执行类似项目具有借鉴作用。  相似文献   
635.
A space-qualified low-noise 22 GHz receiver for the international space-VLBI mission Radioastron has been constructed. The microwave electronics is realized by using thermally matched hybrid circuits. The most important properties of the receiver are phase stability, sensitivity and reliability. The high sensitivity is due to a cooled low noise HEMT amplifier (LNA). The measured receiver noise temperature is less than 100 K. The phase stability is achieved by compact structure and thermal stabilization. Phase stabilities of better than 0.13°/°C and 0.2°/°C for the receiver and the LNA units are measured, respectively. The calculated reliability of the receiver exceeds the requirement of 0.97 for the three year mission.  相似文献   
636.
Detailed bathymetric data from a Hydrosweep multibeam sonar survey of a 250 km-long portion of the superfast-spreading southern East Pacific Rise crest and flanks show that the along-axis variation in morphology and axial depth differs significantly from that observed at the fast-spreading northern East Pacific Rise. While the deep mantle upwelling pattern is similar under the northern and southern East Pacific Rise, our observations require that the connectivity of the shallow, subcrestal plumbing system be more efficient beneath the super-fast spreading southern East Pacific Rise than beneath the slower spreading northern East Pacific Rise.  相似文献   
637.
638.
The southern Kermadec-Hikurangi convergent margin, east of New Zealand, accommodates the oblique subduction of the oceanic Hikurangi Plateau at rates of 4–5 cm/yr. Swath bathymetry and sidescan data, together with seismic reflection and geopotential data obtained during the GEODYNZ-SUD cruise, showed major changes in tectonic style along the margin. The changes reflect the size and abundance of seamounts on the subducting plateau, the presence and thickness of trench-fill turbidites, and the change to increasing obliquity and intracontinental transpression towards the south. In this paper, we provide evidence that faulting with a significant strike-slip component is widespread along the entire 1000 km margin. Subduction of the northeastern scrap of the Hikurangi Plateau is marked by an offset in the Kermadec Trench and adjacent margin, and by a major NW-trending tear fault in the scarp. To the south, the southern Kermadec Trench is devoid of turbidite fill and the adjacent margin is characterized by an up to 1200 m high scarp that locally separates apparent clockwise rotated blocks on the upper slope from strike-slip faults and mass wasting on the lower slope. The northern Hikurangi Trough has at least 1 km of trench-fill but its adjacent margin is characterized by tectonic erosion. The toe of the margin is indented by 10–25 km for more than 200 km, and this is inferred to be the result of repeated impacts of the large seamounts that are abundant on the northern Hikurangi Plateau. The two most recent impacts have left major indentations in the margin. The central Hikurangi margin is characterized by development of a wide accretionary wedge on the lower slope, and by transpression of presubduction passive margin sediments on the upper slope. Shortening across the wedge together with a component of strike-slip motion on the upper slope supports an interpretation of some strain partitioning. The southern Hikurangi margin is a narrow, mainly compressive belt along a very oblique, apparently locked subduction zone.  相似文献   
639.
Over the past few years there have been remarkable and concomitant advances in sonar technology, positioning capabilities, and computer processing power that have revolutionized the mapping, imaging and exploration of the seafloor. Future developments must involve all aspects of the “seafloor mapping system,” including, sonars, ancillary sensors (motion sensors, positioning systems, and sound speed sensors), platforms upon which they are mounted, and the products that are produced. Current trends in sonar development involve the use of innovative new transducer materials and the application of sophisticated processing techniques including focusing algorithms that dynamically compensate for the curvature of the wavefront in the nearfield and thus allow narrower beam widths (higher lateral resolution) at close ranges . Future developments will involve “hybrid”, phase-comparison/beam-forming sonars, the development of broad-band “chirp” multibeam sonars, and perhaps synthetic aperture multibeam sonars. The inability to monitor the fine-scale spatial and temporal variability of the sound speed structure of the water column is often a limiting factor in the production of accurate maps of the seafloor; improvements in this area will involve continuous monitoring devices as well as improved ocean models and perhaps tomography. Remotely Operated Vehicles (ROV’s) and particularly Autonomous Underwater Vehicles (AUV’s) will become more important as platforms for seafloor mapping systems. There will also be great changes in the products produced from seafloor mapping and the processing necessary to create them. New processing algorithms are being developed that take advantage of the density of multibeam sonar data and use statistically robust techniques to “clean” massive data sets very rapidly. A range of approaches are being explored to use multibeam sonar bathymetry and imagery to extract quantitative information about seafloor properties, including those relevant to fisheries habitat. The density of these data also enable the use of interactive 3-D visualization and exploration tools specifically designed to facilitate the interpretation and analysis of very large, complex, multi-component spatial data sets. If properly georeferenced and treated, these complex data sets can be presented in a natural and intuitive manner that allows the simple integration and fusion of multiple components without compromise to the quantitative aspects of the data and opens up new worlds of interactive exploration to a multitude of users.  相似文献   
640.
Receiver functions (RFs) from teleseismic events recorded by the NARS-Baja array were used to map crustal thickness in the continental margins of the Gulf of California, a newly forming ocean basin. Although the upper crust is known to have split apart simultaneously along the entire length of the Gulf, little is known about the behaviour of the lower crust in this region. The RFs show clear P -to- S wave conversions from the Moho beneath the stations. The delay times between the direct P and P -to- S waves indicate thinner crust closer to the Gulf along the entire Baja California peninsula. The thinner crust is associated with the eastern Peninsular Ranges batholith (PRB). Crustal thickness is uncorrelated with topography in the PRB and the Moho is not flat, suggesting mantle compensation by a weaker than normal mantle based on seismological evidence. The approximately W–E shallowing in Moho depths is significant with extremes in crustal thickness of ∼21 and 37 km. Similar results have been obtained at the northern end of the Gulf by Lewis et al., who proposed a mechanism of lower crustal flow associated with rifting in the Gulf Extensional Province for thinning of the crust. Based on the amount of pre-Pliocene extension possible in the continental margins, if the lower crust did thin in concert with the upper crust, it is possible that the crust was thinned during the early stages of rifting before the opening of the ocean basin. In this case, we suggest that when breakup occurred, the lower crust in the margins of the Gulf was still behaving ductilely. Alternatively, the lower crust may have thinned after the Gulf opened. The implications of these mechanisms are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号