首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   6篇
  国内免费   3篇
大气科学   6篇
地球物理   77篇
地质学   11篇
海洋学   5篇
天文学   348篇
自然地理   4篇
  2023年   1篇
  2022年   1篇
  2019年   4篇
  2016年   2篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   4篇
  2011年   6篇
  2010年   8篇
  2009年   31篇
  2008年   30篇
  2007年   33篇
  2006年   32篇
  2005年   25篇
  2004年   33篇
  2003年   27篇
  2002年   19篇
  2001年   24篇
  2000年   34篇
  1999年   55篇
  1998年   55篇
  1997年   4篇
  1996年   1篇
  1994年   2篇
  1992年   1篇
  1988年   4篇
  1986年   1篇
  1984年   1篇
排序方式: 共有451条查询结果,搜索用时 31 毫秒
21.
22.
23.
In this paper we make an effort to understand the interaction of turbulence generated by the magnetorotational instability (MRI) with turbulence from other sources, such as supernova explosions (SNe) in galactic disks. First we perform a linear stability analysis (LSA) of non‐ideal MRI to derive the limiting value of Ohmic diffusion that is needed to inhibit the growth of the instability for different types of rotation laws. With the help of a simple analytical expression derived under first‐order smoothing approximation (FOSA), an estimate of the limiting turbulence level and hence the turbulent diffusion needed to damp the MRI is derived. Secondly, we perform numerical simulations in local cubes of isothermal nonstratified gas with external forcing of varying strength to see whether the linear result holds for more complex systems. Purely hydrodynamic calculations with forcing, rotation and shear are made for reference purposes, and as expected, non‐zero Reynolds stresses are found. In the magnetohydrodynamic calculations, therefore, the total stresses generated are a sum of the forcing and MRI contributions. To separate these contributions, we perform reference runs with MRI‐stable shear profiles (angular velocity increasing outwards), which suggest that the MRI‐generated stresses indeed become strongly suppressed as function of the forcing. The Maxwell to Reynolds stress ratio is observed to decrease by an order of magnitude as the turbulence level due to external forcing exceeds the predicted limiting value, which we interpret as a sign of MRI suppression. Finally, we apply these results to estimate the limiting radius inside of which the SN activity can suppress the MRI, arriving at a value of 14 kpc (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
24.
A serious difficulty with the standard alpha‐omega theory of the origin of galactic magnetic fields involves the question of flux expulsion. This is intimately related to flux freezing. The alpha‐omega theory is shown in the context of the giant superbubble explosions that have a large impact on the physics of the interstellar medium. It is shown that superbubbles alone can duplicate the processes of the alpha‐omega dynamo and produce exponential growth of the galactic magnetic field. The possibility of the blow‐out of pieces of the magnetic field is discussed and it is shown that they have the potential to solve the flux‐expulsion problem. However, such an explanation must lead to apparent ‘gaps’ in the field in the galactic disc. These gaps are probably unavoidable in any dynamo theory and should have important observable consequences, one of which is an explanation for the escape of cosmic rays from the disc (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
25.
In this study we provide the first numerical demonstration of the effects of turbulence on the mean Lorentz force and the resulting formation of large‐scale magnetic structures. Using three‐dimensional direct numerical simulations (DNS) of forced turbulence we show that an imposed mean magnetic field leads to a decrease of the turbulent hydromagnetic pressure and tension. This phenomenon is quantified by determining the relevant functions that relate the sum of the turbulent Reynolds and Maxwell stresses with the Maxwell stress of the mean magnetic field. Using such a parameterization, we show by means of two‐dimensional and three‐dimensional mean‐field numerical modelling that an isentropic density stratified layer becomes unstable in the presence of a uniform imposed magnetic field. This large‐scale instability results in the formation of loop‐like magnetic structures which are concentrated at the top of the stratified layer. In three dimensions these structures resemble the appearance of bipolar magnetic regions in the Sun. The results of DNS and mean‐field numerical modelling are in good agreement with theoretical predictions. We discuss our model in the context of a distributed solar dynamo where active regions and sunspots might be rather shallow phenomena (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
26.
27.
Equilibrium models of differentially rotating nascent neutron stars are constructed, which represent the result of the accretion-induced collapse of rapidly rotating white dwarfs. The models are built in a two-step procedure: (1) a rapidly rotating pre-collapse white dwarf model is constructed; (2) a stationary axisymmetric neutron star having the same total mass and angular momentum distribution as the white dwarf is constructed. The resulting collapsed objects consist of a high-density central core of size roughly 20 km, surrounded by a massive accretion torus extending over 1000 km from the rotation axis. The ratio of the rotational kinetic energy to the gravitational potential energy of these neutron stars ranges from 0.13 to 0.26, suggesting that some of these objects may have a non-axisymmetric dynamical instability that could emit a significant amount of gravitational radiation.  相似文献   
28.
The stability of the dynamical trajectories of softened spherical gravitational systems is examined, both in the case of the full N -body problem and that of trajectories moving in the gravitational field of non-interacting background particles. In the latter case, for   N 10 000  , some trajectories, even if unstable, had exceedingly long diffusion times, which correlated with the characteristic e-folding time-scale of the instability. For trajectories of   N ≈100 000  systems this time-scale could be arbitrarily large – and thus appear to correspond to regular orbits. For centrally concentrated systems, low angular momentum trajectories were found to be systematically more unstable. This phenomenon is analogous to the well-known case of trajectories in generic centrally concentrated non-spherical smooth systems, where eccentric trajectories are found to be chaotic. The exponentiation times also correlate with the conservation of the angular momenta along the trajectories. For N up to a few hundred, the instability time-scales of N -body systems and their variation with particle number are similar to those of the most chaotic trajectories in inhomogeneous non-interacting systems. For larger N (up to a few thousand) the values of the these time-scales were found to saturate, increasing significantly more slowly with N . We attribute this to collective effects in the fully self-gravitating problem, which are apparent in the time variations of the time-dependent Liapunov exponents. The results presented here go some way towards resolving the long-standing apparent paradoxes concerning the local instability of trajectories. This now appears to be a manifestation of mechanisms driving evolution in gravitational systems and their interactions – and may thus be a useful diagnostic of such processes.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号