首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   951篇
  免费   37篇
  国内免费   31篇
测绘学   41篇
大气科学   18篇
地球物理   43篇
地质学   95篇
海洋学   16篇
天文学   741篇
综合类   26篇
自然地理   39篇
  2024年   2篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   18篇
  2013年   14篇
  2012年   20篇
  2011年   15篇
  2010年   16篇
  2009年   79篇
  2008年   58篇
  2007年   77篇
  2006年   94篇
  2005年   72篇
  2004年   79篇
  2003年   86篇
  2002年   67篇
  2001年   64篇
  2000年   42篇
  1999年   41篇
  1998年   58篇
  1997年   7篇
  1996年   10篇
  1995年   9篇
  1994年   9篇
  1993年   7篇
  1992年   4篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1981年   1篇
排序方式: 共有1019条查询结果,搜索用时 62 毫秒
911.
The problem of determining all equilibria of a satellite in a circular orbit is solved in the case where the satellite is subjected to gravitational and aerodynamic torques. The number of isolated equilibria is shown to be no less than eight and no more than 24. The existence proof of one-parameter families of stationary solutions is given. Using Lyapunov's method sufficient conditions for stability of isolated equilibria are obtained. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
912.
To improve photometric precision by removing the blending effect, a newly developed technique of difference image analysis (DIA) has been adopted by several gravitational microlensing experiment groups. However, the principal problem of the DIA method is that, by its nature, it has difficulties in measuring the baseline flux F 0 of a source star, causing a degeneracy problem in determining the lensing parameters of an event. Therefore, it is often believed that the DIA method is not as powerful as the classical method based on PSF photometry for determining the Einstein time-scales t E of events.
In this paper, we demonstrate that the degeneracy problem in microlensing events, detectable from searches using the DIA method, is not as serious as is often thought. This is because a substantial fraction of events will be high amplification events for which the deviations of the amplification curves, constructed with the wrong baseline fluxes from their corresponding best-fit standard amplification curves, will be considerable, even for a small amount of the fractional baseline flux deviation Δ F 0 F 0. With a model luminosity function of source stars and under realistic observational conditions, we find that ∼30 per cent of detectable Galactic bulge events are expected to have high amplifications and their baseline fluxes can be determined with uncertainties Δ F 0 F 0≤0.5.  相似文献   
913.
Detection of caustic crossings of binary-lens gravitational microlensing events is important because by detecting them one can obtain useful information about both the lens and the source star. In this paper, we compute the distribution of the intervals between two successive caustic crossings, f ( t cc), for Galactic bulge binary-lens events to investigate the observational strategy for the optimal detection and resolution of caustic crossings. From this computation, we find that the distribution is highly skewed towards short t cc and peaks at t cc∼1.5 d. For the maximal detection of caustic crossings, therefore, prompt initiation of follow-up observations for intensive monitoring of events will be important. We estimate that, under the strategy of the current follow-up observations with a second caustic-crossing preparation time of ∼2 d, the fraction of events with resolvable caustic crossing is ∼80 per cent. We find that if the follow-up observations can be initiated within 1 d after the first caustic crossing by adopting more aggressive observational strategies, the detection rate can be improved to ∼90 per cent.  相似文献   
914.
It has been shown that gravitational microlensing events towards the Galactic Bulge are sensitive to the presence of a planet orbiting the lensing star. The probability of planet detection is calculated here as a function of the binary geometry for mass ratios of     taking the effects of resolving the source and the inclusion of unlensed light (blending) into account. Source radii up to     θ E are considered, at which point the detection probability becomes negligible. Small     mass ratio planets become undetectable at source radii of     θ E . Blending has a slight adverse effect on planet detection. It is worst when the unblended detection probability is small and causes planets to become undetectable at smaller source radii than would be the case in the absence of blending. An alternative to current gravitational microlensing follow-up observations is investigated, where only the peaks of high amplification events are followed. Such a strategy promises to be at least twice as efficient at detecting planets as current observations, but requires a large number of high amplification events.  相似文献   
915.
Owing to gravitational instability, an initially Gaussian density field develops non-Gaussian features as the Universe evolves. The most prominent non-Gaussian features are massive haloes, visible as clusters of galaxies. The distortion of high-redshift galaxy images because of the tidal gravitational field of the large-scale matter distribution, called cosmic shear, can be used to investigate the statistical properties of the large‐scale structure (LSS) . In particular, non-Gaussian properties of the LSS will lead to a non-Gaussian distribution of cosmic-shear statistic. The aperture mass ( M ap) statistics, recently introduced as a measure for cosmic shear, is particularly well suited for measuring these non-Gaussian properties. In this paper we calculate the highly non-Gaussian tail of the aperture mass probability distribution, assuming Press–Schechter theory for the halo abundance and the 'universal' density profile of haloes as obtained from numerical simulations. We find that for values of M ap much larger than its dispersion, this probability distribution is closely approximated by an exponential, rather than a Gaussian. We determine the amplitude and shape of this exponential for various cosmological models and aperture sizes, and show that wide-field imaging surveys can be used to distinguish between some of the currently most popular cosmogonies. Our study here is complementary to earlier cosmic-shear investigations, which focused more on two- and three-point statistical properties.  相似文献   
916.
介绍了Kau la线性摄动方法的基本原理和算法,基于CHAMP几何法轨道和动力法轨道,给出了利用该方法恢复地球重力场模型的实现过程,分析了Kau la线性摄动方法在实际应用中需要注意的问题。基于德国慕尼黑技术大学提供的一个月的CHAMP几何法轨道和德国GFZ数据中心提供的快速科学轨道,计算出了50×50阶地球重力场模型CHAMP-Kau la1S,并与EIGEN-CG03C、EIGEN-CHAMP03S、EIGEN2、ENIGN1S、EGM96模型进行了比较。结果表明:X ISM-CHAMP1S模型精度明显优于相同阶次EIGEN1S模型,前40阶明显优于EGM96模型,而低于同阶次的EIGEN2和EIGEN-CHAMP03S模型精度。  相似文献   
917.
918.
919.
920.
We investigate the effects of weak gravitational lensing in the standard cold dark matter cosmology, using an algorithm that evaluates the shear in three dimensions. The algorithm has the advantage of variable softening for the particles, and our method allows the appropriate angular diameter distances to be applied to every evaluation location within each three-dimensional simulation box. We investigate the importance of shear in the distance–redshift relation, and find it to be very small. We also establish clearly defined values for the smoothness parameter in the relation, finding its value to be at least 0.83 at all redshifts in our simulations. From our results, obtained by linking the simulation boxes back to source redshifts of 4, we are able to observe the formation of structure in terms of the computed shear, and also note that the major contributions to the shear come from a very broad range of redshifts. We show the probability distributions for the magnification, source ellipticity and convergence, and also describe the relationships amongst these quantities for a range of source redshifts. We find a broad range of magnifications and ellipticities; for sources at a redshift of 4, 97.5 per cent of all lines of sight show magnifications up to 1.39 and ellipticities up to 0.23. There is clear evidence that the magnification is not linear in the convergence, as might be expected for weak lensing, but contains contributions from higher order terms in both the convergence and the shear. Our results for the one-point distribution functions are generally different from those obtained by other authors using two-dimensional (planar) approaches, and we suggest reasons for the differences. Our magnification distributions for sources at redshifts of 1 and 0.5 are also very different from the results used by other authors to assess the effect on the perceived value of the deceleration parameter, and we briefly address this question.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号