首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   951篇
  免费   37篇
  国内免费   31篇
测绘学   41篇
大气科学   18篇
地球物理   43篇
地质学   95篇
海洋学   16篇
天文学   741篇
综合类   26篇
自然地理   39篇
  2024年   2篇
  2023年   2篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   12篇
  2018年   8篇
  2017年   6篇
  2016年   3篇
  2015年   4篇
  2014年   18篇
  2013年   14篇
  2012年   20篇
  2011年   15篇
  2010年   16篇
  2009年   79篇
  2008年   58篇
  2007年   77篇
  2006年   94篇
  2005年   72篇
  2004年   79篇
  2003年   86篇
  2002年   67篇
  2001年   64篇
  2000年   42篇
  1999年   41篇
  1998年   58篇
  1997年   7篇
  1996年   10篇
  1995年   9篇
  1994年   9篇
  1993年   7篇
  1992年   4篇
  1990年   7篇
  1989年   5篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1981年   1篇
排序方式: 共有1019条查询结果,搜索用时 770 毫秒
411.
Mechanical trapping (or straining) of fine particles is a key mechanism in many filtration systems. For example, the performance of rapid sand filters depends in part on mechanical trapping of larger fine particles, while relying on adsorptive processes to trap very small fine particles and microbes. The ability to trap these particles is directly related to the construction of the packed bed used for filtration in this system. Thus, the ability to model the effect of the inner structure of the packed bed can lead to more efficient design for improved filtration. Because of its significant efficiency, gravitational sphere packing is employed in this work to simulate a bed of mono‐sized randomly packed spheres. The simulated bed provides a way to visualize the pore network and estimate the pore size distribution associated with the void space between particles. Furthermore, by subsequently introducing fine particles into the bed, we evaluate the mass‐rate of fine particles passing through and possibly saturating the packed bed. Results show that fine particles between 15% and 25% of the coarse particle size can be physically strained within the randomly packed bed. These results differ significantly from the results obtained assuming a periodically spaced bed. The technique therefore provides an efficient yet accurate alternative for understanding how fine particles pass through a coarse particulate medium. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
412.
413.
Variations in gravitational potential energy contribute to the intraplate stress field thereby providing the means by which lithospheric density structure is communicated at the plate scale. In this light, the near equivalence in the gravitational potential energy of typical continental lithosphere with the mid‐ocean ridges is particularly intriguing. Assuming this equivalence is not simply a chance outcome of continental growth, it then probably involves long‐term modulation of the density configuration of the continents via stress regimes that are able to induce significant strains over geological time. Following this notion, this work explores the possibility that the emergence of a chemically, thermally and mechanically structured continental lithosphere reflects a set of thermally sensitive feedback mechanisms in response to Wilson cycle oscillatory forcing about an ambient stress state set by the mid‐ocean ridge system. Such a hypothesis requires the continents are weak enough to sustain long‐term (108 years) strain rates of the order of ~10?17 s?1 as suggested by observations that continental lithosphere is almost everywhere critically stressed, by estimates of seismogenic strain rates in stable continental interiors such as Australia and by the low‐temperature thermochronological record of the continents that requires significant relief generation on the 108 year time‐scale. Furthermore, this notion provides a mechanism that helps explain interpretations of recently published heat flow data that imply the distribution of heat‐producing elements within the continents may be tuned to produce a characteristic thermal regime at Moho depths.  相似文献   
414.
415.
416.
417.
418.
419.
420.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号