首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1455篇
  免费   174篇
  国内免费   702篇
测绘学   22篇
大气科学   316篇
地球物理   200篇
地质学   796篇
海洋学   209篇
天文学   593篇
综合类   50篇
自然地理   145篇
  2024年   10篇
  2023年   36篇
  2022年   63篇
  2021年   57篇
  2020年   69篇
  2019年   73篇
  2018年   43篇
  2017年   47篇
  2016年   65篇
  2015年   57篇
  2014年   60篇
  2013年   81篇
  2012年   92篇
  2011年   104篇
  2010年   101篇
  2009年   133篇
  2008年   155篇
  2007年   123篇
  2006年   102篇
  2005年   106篇
  2004年   91篇
  2003年   110篇
  2002年   74篇
  2001年   88篇
  2000年   78篇
  1999年   63篇
  1998年   71篇
  1997年   31篇
  1996年   16篇
  1995年   21篇
  1994年   22篇
  1993年   21篇
  1992年   16篇
  1991年   10篇
  1990年   13篇
  1989年   4篇
  1988年   6篇
  1987年   9篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
排序方式: 共有2331条查询结果,搜索用时 15 毫秒
91.
The cataclysmic variable V378 Peg is known since 15 years. Although V378 Peg is a rather bright star (14 mag), it underwent no detailed study. We performed photometric observations of V378 Peg during 75 h with the goal to detect periodic brightness variations. The obtained light-curves clearly showed changes with a period of about 3 h. The Fourier analysis reveals that this oscillation occurs with a period of 3.238 h and a semiamplitude of 0.07 mag. Although the detected oscillation possesses certain coherence, it appears to have a slightly unstable period or phase. Therefore, the detected period cannot be the orbital period of the V378 Peg system. Because such instability is typical of superhumps, we must consider the detected oscillation as superhumps. Furthermore, V378 Peg shows no outbursts and has to be a nova-like variable rather than a dwarf nova. Hence, the detected superhumps have to be regarded as permanent superhumps. Because superhump periods in cataclysmic variables are close to orbital periods, we can find the place of V378 Peg in the orbital period distribution of cataclysmic variables. V378 Peg is a permanent superhump system above the upper edge of the 2-3 h period gap in the orbital period distribution.  相似文献   
92.
High-dispersion near-infrared spectra have been taken of seven highly evolved, variable, intermediate-mass (4–6 M) asymptotic giant branch (AGB) stars in the Large Magellanic Cloud and Small Magellanic Cloud in order to look for C, N and O variations that are expected to arise from third dredge-up and hot-bottom burning. The pulsation of the objects has been modelled, yielding stellar masses, and spectral synthesis calculations have been performed in order to derive abundances from the observed spectra. For two stars, abundances of C, N, O, Na, Al, Ti, Sc and Fe were derived and compared with the abundances predicted by detailed AGB models. Both stars show very large N enhancements and C deficiencies. These results provide the first observational confirmation of the long-predicted production of primary nitrogen by the combination of third dredge-up and hot-bottom burning in intermediate-mass AGB stars. It was not possible to derive abundances for the remaining five stars: three were too cool to model, while another two had strong shocks in their atmospheres which caused strong emission to fill the line cores and made abundance determination impossible. The latter occurrence allows us to predict the pulsation phase interval during which observations should be made if successful abundance analysis is to be possible.  相似文献   
93.
94.
We present 132 h of new time-series photometric observations of the δ Scuti star CD−24 7599 acquired during 86 nights from 1993 to 1996 to study its frequency and amplitude variations. By using all published observations we demonstrate that the three dominating pulsation modes of the star can change their photometric amplitudes within one month at certain times, while the amplitudes can remain constant within the measurement errors at other times. CD−24 7599 also exhibits frequency variations, which do not show any correspondence between the different modes.   The typical time-scale for the amplitude variations is found to be several hundred days, which is of the same order of magnitude as the inverse linear growth rates of a selected model. We find no evidence for periodic amplitude modulation of two of the investigated modes ( f 2 and f 3), but f 1 may exhibit periodic modulation. The latter result could be spurious and requires confirmation. The observed frequency variations may either be continuous or reflect sudden frequency jumps. No evidence for cyclical period changes is obtained.   We exclude precession of the pulsation axis and oblique pulsation for the amplitude variations. Beating of closely spaced frequencies cannot explain the amplitude modulations of two of the modes, while it is possible for the third. Evolutionary effects, binarity, magnetic field changes or avoided crossings cannot be made responsible for the observed period changes. Only resonance between different modes may be able to explain the observations. However, at this stage a quantitative comparison is not possible. More observations, especially data leading to a definite mode identification and further measurements of the temporal behaviour of the amplitudes and frequencies of CD−24 7599, are required.  相似文献   
95.
We present numerical hydrodynamical evolutions of rapidly rotating relativistic stars, using an axisymmetric, non-linear relativistic hydrodynamics code. We use four different high-resolution shock-capturing (HRSC) finite-difference schemes (based on approximate Riemann solvers) and compare their accuracy in preserving uniformly rotating stationary initial configurations in long-term evolutions. Among these four schemes, we find that the third-order piecewise parabolic method scheme is superior in maintaining the initial rotation law in long-term evolutions, especially near the surface of the star. It is further shown that HRSC schemes are suitable for the evolution of perturbed neutron stars and for the accurate identification (via Fourier transforms) of normal modes of oscillation. This is demonstrated for radial and quadrupolar pulsations in the non-rotating limit, where we find good agreement with frequencies obtained with a linear perturbation code. The code can be used for studying small-amplitude or non-linear pulsations of differentially rotating neutron stars, while our present results serve as testbed computations for three-dimensional general-relativistic evolution codes.  相似文献   
96.
We present time-resolved spectrophotometry of the pulsating DA white dwarf G29-38. As in previous broad-band photometry, the light curve shows the presence of a large number of periodicities. Many of these are combination frequencies, i.e. periodicities occurring at frequencies that are sums or differences of frequencies of stronger, real modes. We identify at least six real modes, and at least five combination frequencies. We measure line-of-sight velocities for our spectra and detect periodic variations at the frequencies of five of the six real modes, with amplitudes of up to 5 km s−1. We argue that these variations reflect the horizontal surface motion associated with the g-mode pulsations. No velocity signals are detected at any of the combination frequencies, confirming that the flux variations at these frequencies do not reflect physical pulsation, but rather reflect mixing of frequencies owing to a non-linear transformation in the outer layers of the star. We discuss the amplitude ratios and phase differences found for the velocity and light variations, as well as those found for the real modes and their combination frequencies, both in a model-independent way and in the context of models based on the convective-driving mechanism. In a companion paper, we use the wavelength dependence of the amplitudes of the modes to infer their spherical degree.  相似文献   
97.
We have investigated the influence of the r-mode instability on hypercritically accreting neutron stars in close binary systems during their common envelope phases, based on the scenario proposed by Brown et al. On the one hand, neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency.
The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning up of the star, the final rotational frequency of which is well below the mass-shedding limit, in fact typically as low as 10 per cent of that of the mass-shedding state. On a very short time-scale the rotational frequency tends to approach a certain constant value and saturates there, as long as the amount of accreted mass does not exceed a certain limit to collapse to a black hole. This implies that a similar mechanism of gravitational radiation to that in the so-called 'Wagoner star' may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by gravitational wave detectors such as LIGO II.  相似文献   
98.
The standard method of measuring rotational splitting from solar full-disc oscillation data, based on maximum-likelihood fitting of multi-Lorentzian profiles to oscillation power spectra, systematically overestimates the splitting. One of the reasons is that the maximum likelihood estimators (MLE) become unbiased only asymptotically as the number of data tends to infinity; for a finite data set they are often biased, inducing a systematic error. In this paper we assess by Monte Carlo simulations the amount of systematic error in the splitting measurement, using artificially generated power spectra. The simulations are carried out for multiplets of degree     2 and 3 with various signal-to-noise ratios, linewidths and observing times. We address the possible use of non-MLE estimators that could provide a smaller or negligible systematic error. The implication for asteroseismology is also discussed.  相似文献   
99.
The first results of numerical analysis of classical r-modes of rapidly rotating compressible stellar models are reported. The full set of linear perturbation equations of rotating stars in Newtonian gravity is solved numerically without the slow rotation approximation. A critical curve of gravitational wave emission induced instability, which restricts the rotational frequencies of hot young neutron stars, is obtained. Taking the standard cooling mechanisms of neutron stars into account, we also show the 'evolutionary curves' along which neutron stars are supposed to evolve as cooling and spinning down proceed. Rotational frequencies of 1.4-M stars suffering from this instability decrease to around 100 Hz when the standard cooling mechanism of neutron stars is employed. This result confirms the results of other authors, who adopted the slow rotation approximation.  相似文献   
100.
The characteristics of the line profile variations observed in optical transitions of O-type stars are reviewed. For a few well-observed stars, there is compelling evidence that the variations are due to photospheric velocity fields from one or more modes of nonradial pulsation. However, the origin of the line profile variations observed in most O stars is not yet established. To date, there is little empirical evidence to suggest that the variability in optical absorption lines of O stars is causally linked to the stellar wind variability commonly observed in their UV resonance lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号