首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   174篇
  免费   7篇
  国内免费   1篇
地球物理   2篇
海洋学   2篇
天文学   178篇
  2023年   6篇
  2021年   1篇
  2016年   1篇
  2015年   2篇
  2013年   1篇
  2012年   1篇
  2011年   4篇
  2010年   6篇
  2009年   15篇
  2008年   10篇
  2007年   16篇
  2006年   19篇
  2005年   19篇
  2004年   14篇
  2003年   14篇
  2002年   12篇
  2001年   9篇
  2000年   4篇
  1999年   6篇
  1998年   12篇
  1997年   7篇
  1996年   2篇
  1989年   1篇
排序方式: 共有182条查询结果,搜索用时 449 毫秒
101.
An active region on the surface of a cometarynucleus is considered as a conic hole in the surface dust mantle with icy bottom and dusty side-walls. This conic structureshould concentrate solar energy onto the bottom andtherefore enhance sublimation. Preliminary results of thecalculation of this effect are given. The temperature distributionat the bottom of the crater is calculated for different sets ofits geometrical parameters. Effects of intensified sublimation depending on the geometrical parameters areconsidered for the specific case when a single active region islocated exactly at the pole of the nucleus and the pole is directed tothe Sun.  相似文献   
102.
103.
太阳风源自太阳大气,在行星际空间传播过程中被持续加热,然而究竟是何种能量加热了太阳风至今未研究清楚.太阳风普遍处于湍动状态,其湍动能量被认为是加热太阳风的重要能源.然而,太阳风湍流通过何种载体、基于何种微观物理机制加热了太阳风尚不明确,这是相关研究的关键问题.将回顾人类对太阳风加热问题的研究历史,着重介绍近年来我国学者在太阳风离子尺度湍流与加热方面取得的研究进展,展望未来在太阳风加热研究中有待解决的科学问题和可能的研究方向.  相似文献   
104.
Charge exchange occurs between charged ions with enough energy to overcome Coulomb repulsion, a condition satisfied for collisions at velocities like those of the winds driven from hot stars by radiation pressure. X‐ray line ratios in some hot stars are inconsistent with those expected from thermal plasmas excited by electron impact. Ion‐ion interactions including charge exchange might be responsible instead if high‐velocity collisions between ions are enabled by the presence of a magnetic field in the wind, suggesting a possible alternative mechanism to the widely accepted instability‐driven shock model. The nature of a plasma in charge‐exchange equilibrium is yet to be determined (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
105.
周晓伟  吴德金  陈玲 《天文学报》2023,64(3):34-210
射电辐射机制,尤其是射电暴发现象的相干辐射机制,是天体物理中最复杂、争议最多的电磁辐射机制.由于受到多重物理因素相互牵连的复杂影响,相干射电辐射机制的理论研究存在很大的难度,长期以来在等离子体辐射和电子回旋脉泽辐射这两类相干辐射机制间争议一直不断.近年来,人们开始尝试将粒子数值模拟方法应用于相干射电辐射机制的研究,并已经取得了一些积极的进展.本文将着重介绍近年来的粒子模拟研究工作及其取得的主要进展,并对现存的一些问题和困难进行简要评述.  相似文献   
106.
During the eighties, microgravity research focussed predominantly on the investigation of fundamental phenomena, often with limited industrial support. Although this approach led to some rather impressive breakthroughs in terms of new theoretical insights and microgravity experimentation, the need for increased co-ordination and interest from industry became increasingly apparent. In this decade, a user-driven research strategy has been instigated by ESA to promote microgravity research. The objective is to coordinate ESA, national activities and industry into an overall European strategy, which will allow valuable application-oriented microgravity research to be performed aboard the International Space Station (ISS). On this basis, it is expected that scientific progress will evolve even more rapidly due to the easier planning, regular access and longer experiment-durations associated with the ISS. This paper highlights the wealth of microgravity research being co-ordinated by ESA in the field of physical sciences. A number of key areas of research under microgravity conditions are currently being explored such as alloy solidification, crystal growth,measurement of thermophysical properties, combustion mechanisms, fluid flow, cold atom physics and complex plasmas, to name but a few. The following sections will provide background information relating to the various ESA research programmes, as well as emphasising their microgravity relevance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
107.
Beech  Martin  Gauer  Kai 《Earth, Moon, and Planets》2000,88(4):211-221
We have produced top ten ranked lists of impact velocity, mainbelt asteroid region dwell times and impact probabilities for a selection of short period comets. The comet with the combined highest ranking with respect to impact probability and impact velocity is Comet C/1766 G1 Helfenzrieder. Since it is not clear that this comet still exists, the highest ranked, presently active, comet with respect to the likelihood of suffering impacts from meter-sized objects while in the main belt asteroid region is Comet 28P/Neujmin 1. We find no evidence to support the existence of a distinctive sub-set of the short period comets liable to show repeated outburst or splitting behavioursdue to small body, meter-sized, asteroid impacts. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
108.
Gamma-ray emission in pulsar magnetospheres is attributed to synchrotron radiation, which tends to decrease the pitch angle of the particle, being balanced by plasma processes tending to increase the pitch angle. The plasma processes are non-resonant instabilities that drive non-resonant quasilinear diffusion (NQD), thereby pumping energy from waves and the parallel motion of the particle into the perpendicular motion of the particle. It is shown that NQD can maintain the pitch angles for particles near the light-cylinder such that they radiate synchrotron radiation at MeV energies. Compared to conventional emission mechanisms (such as polar cap or outer gap models), the resulting spectrum has a relatively low upper cut-off from about a few to 100 MeV. Possible observational consequences of this mechanism are discussed.  相似文献   
109.
激光驱动亥姆霍兹电容线圈靶的磁重联实验已经提出并进行了多年.当实验中的金属板被强激光照射时产生自由电子,这些自由电子的运动在连接两金属板的两个平行线圈中产生电流,由两个平行线圈内部电流产生的磁场之间随即发生重联.该实验不同于其他直接由Biermann电池效应所产生高β(等离子体热压与磁压的比值)环境下的磁重联实验.对该类实验进行了3维磁流体动力学数值模拟,首次展示了亥姆霍兹电容器线圈靶如何驱动磁重联的过程.数值模拟结果清楚地表明,磁重联的出流等离子体在线圈周围发生与实验结果相一致的堆积现象.线圈电流产生的磁场可高达100 T,使得磁重联区域周围的等离子体β值达到10^-2.与实验室结果进行比较,数值模拟重复了实验展示的大多数特征,可有助于深入认识和理解实验结果背后的物理学原理.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号