首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   575篇
  免费   24篇
  国内免费   2篇
测绘学   22篇
大气科学   2篇
地球物理   13篇
地质学   10篇
海洋学   1篇
天文学   546篇
综合类   7篇
  2024年   2篇
  2023年   8篇
  2022年   6篇
  2021年   5篇
  2020年   1篇
  2019年   8篇
  2018年   3篇
  2017年   1篇
  2016年   4篇
  2015年   10篇
  2014年   16篇
  2013年   7篇
  2012年   25篇
  2011年   18篇
  2010年   8篇
  2009年   37篇
  2008年   39篇
  2007年   59篇
  2006年   42篇
  2005年   54篇
  2004年   36篇
  2003年   38篇
  2002年   39篇
  2001年   29篇
  2000年   25篇
  1999年   16篇
  1998年   39篇
  1997年   6篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有601条查询结果,搜索用时 239 毫秒
31.
The short-term evolution of spheroidal galaxies has been explored by S. Chandrasekhar et al. and G. S. Sunder et al. In this paper, we study their long-term evolution with Laskar's method of frequency analysis. The main new results are as follows: (1) There exists a unique equilibrium, which is spherically symmetric. This equilibrium has a critical linear stability. (2) Generally speaking, the semi-axes exhibit quasiperiodic or nearly quasi-periodic (in a time scale longer than a Hubble time) oscillations around the radius of the above-mentioned equilibrium, so the equilibrium is practically stable. (3) There are cases in which one of the semi-axes tends fast to zero while the other to some finite value. The limit state is generally planar rather than linear, i.e. it is the symmetric semi-axis that tends to zero. This implies that some disk galaxies may have originated from spheroidal pregalaxy material.  相似文献   
32.
In this paper we consider the dynamical evolution and orbital stability of objects in the asteroid belt. A simple physical model, including full gravitational perturbations from both giant planets, is used to compute the dynamical evolution of 1000 test particles simulating the primitive asteroids. The criterion of planet crossing (or close approach in the case of resonant objects) is used to reject particles from the simulation. 44 per cent of the particles survived for the whole time-span covered by the numerical integration (∼109 yr).
The 4:1, 3:1 and to a lesser extent the 2:1 Kirkwood gaps are formed in ∼107 yr of evolution, representing direct numerical evidence about their gravitational origin.
We found that the rms eccentricity and inclination of the sample experience a fast increase during the first 106 yr. The final rms eccentricity is 0.11, ∼60 per cent smaller than the present rms eccentricity (0.17). Nevertheless, the gravitational action of the giant planets suffices to prevent the formation of large objects, allowing catastrophic collisions and the subsequent depletion of material from this zone of the Solar system. The excited eccentricity by Jupiter and Saturn may favour mutual encounters and the further increase of the relative velocities up to their present values.  相似文献   
33.
Simulations of spheroidal systems with substructure: trees in fields   总被引:1,自引:0,他引:1  
We present a hybrid technique of N -body simulation to deal with collisionless stellar systems having an inhomogeneous global structure. We combine a treecode and a self-consistent field code such that each of the codes models a different component of the system being investigated. The treecode is suited to treatment of dynamically cold or clumpy components, which may undergo significant evolution within a dynamically hot system. The hot system is appropriately evolved by the self-consistent field code. This combined code is particularly suited to a number of problems in galactic dynamics. Applications of the code to these problems are briefly discussed.  相似文献   
34.
We performed N -body simulations of star cluster encounters with Hernquist's TREECODE in a CRAY YMP-2E computer under different initial conditions (relative positions and velocities, cluster sizes, masses and concentration degrees). The total number of particles per simulation ranged from 1024 to 20480. These models are compared with a series of isodensity maps of cluster pairs in the Magellanic Clouds. Evidence is found that during the interactions, transient morphological effects such as an expanded halo, isophotal deformation and isophotal twisting can occur as a result of tidal effects and dynamical friction. The simulations also show that different outcomes are possible depending on the initial parameters: (i) long-standing changes of concentration degree can occur after the collision; (ii) one member can disaggregate; or (iii) the pair can coalesce into a single cluster with a distinct structure compared with the original ones. These simulations can reproduce a wide range of morphological structures in observed cluster pairs.  相似文献   
35.
We determine the response of a self-similar isothermal stellar system to small adiabatic gravitational perturbations. For odd spherical harmonics the response is identical to the response of the analogous isothermal fluid system. For even spherical harmonics the response can be regarded as an infinite series of wavetrains in log r , implying alternating compression and rarefaction in equal logarithmic radius intervals. Partly because of the oscillatory nature of the solutions, tidal fields from external sources are not strongly amplified by an intervening isothermal stellar system, except at radii ≲10−3.5 times the satellite radius; at some radii the stellar system can even screen the external tidal field in a manner analogous to Debye screening. As Weinberg has pointed out, individual resonances in a stellar system can strongly amplify external tidal fields over a limited radial range, but we cannot address this possibility because we examine only adiabatic perturbations. We also discuss the application of our method to the halo response caused by the slow growth of an embedded thin disc.  相似文献   
36.
On a time-symmetric Hermite integrator for planetary N-body simulation   总被引:2,自引:0,他引:2  
We describe a P(EC) n Hermite scheme for planetary N -body simulation. The fourth-order implicit Hermite scheme is a time-symmetric integrator that has no secular energy error for the integration of periodic orbits with time-symmetric time-steps. In general N -body problems, however, this advantage is of little practical significance, since it is difficult to achieve time-symmetry with individual variable time-steps. However, we can easily enjoy the benefit of the time-symmetric Hermite integrator in planetary N -body systems, where all bodies spend most of the time on nearly circular orbits. These orbits are integrated with almost constant time-steps even if we adopt the individual time-step scheme. The P(EC) n Hermite scheme and almost constant time-steps reduce the integration error greatly. For example, the energy error of the P(EC)2 Hermite scheme is two orders of magnitude smaller than that of the standard PEC Hermite scheme in the case of an N  = 100,  m  = 1025 g planetesimal system with the rms eccentricity 〈 e 21/2 ≲0.03.  相似文献   
37.
Orbit classification in arbitrary 2D and 3D potentials   总被引:1,自引:0,他引:1  
A method of classifying generic orbits in arbitrary 2D and 3D potentials is presented. It is based on the concept of spectral dynamics introduced by Binney &38; Spergel that uses the Fourier transform of the time series of each coordinate. The method is tested using a number of potentials previously studied in the literature and is shown to distinguish correctly between regular and irregular orbits, to identify the various families of regular orbits (boxes, loops, tubes, boxlets, etc.), and to recognize the second-rank resonances that bifurcate from them. The method returns the position of the potential centre and, for 2D potentials, the orientation of the principal axes as well, should this be unknown. A further advantage of the method is that it has been encoded in a FORTRAN program that does not require user intervention, except for 'fine tuning' of search parameters that define the numerical limits of the code. The automatic character makes the program suitable for classifying large numbers of orbits.  相似文献   
38.
Frequency map analysis of the orbital structure in elliptical galaxies   总被引:1,自引:0,他引:1  
We present an application of the frequency map analysis to an elliptical galaxy which is represented by a generalization of a double-power-law spherical mass model. The density distribution of this model varies as r −γ close to the centre and as r −4 at large radii. We study the case with γ = 1, which is known as the 'weak-cusp' model and which represents well the density profile of the 'core' galaxies observed by the Hubble Space Telescope . The final objective of our work is to improve our understanding of the dynamics of elliptical galaxies in a similar way to Merritt &38; Fridman, finding the regions of stochasticity, looking for resonances that might play an important role in sustaining the triaxial morphology, and analysing the diffusion of orbits. To this end, we use the frequency map analysis of Laskar, which has been applied widely in the field of celestial mechanics but which is a relatively new technique in the area of galactic dynamics. Finally, we show some useful features of this method in understanding the global dynamical structure of the system.  相似文献   
39.
The long-term evolution of stellar orbits bound to a massive centre is studied in order to understand the cores of star clusters in central regions of galaxies. Stellar trajectories undergo tiny perturbations, the origins of which are twofold: (i) the gravitational field of a thin gaseous disc surrounding the galactic centre, and (ii) cumulative drag arising from successive interactions of the stars with the material of the disc. Both effects are closely related because they depend on the total mass of the disc, assumed to be a small fraction of the central mass. It is shown that, in contrast to previous works, most of the retrograde (with respect to the disc) orbits are captured by the central object, presumably a massive black hole. Initially prograde orbits are also affected, so that statistical properties of the central star cluster in quasi-equilibrium may differ significantly from those deduced in previous analyses.  相似文献   
40.
In this paper we show the positional oscillation of a massive object in a dense stellar system by numerical N -body simulations. We found that the central massive object, which at first is placed at rest at the centre of the surrounding spherical stellar system, promptly departs from the centre and rotates in accordance with the rotation of the stellar system, if the stellar system has an appreciable rotation. This oscillatory motion continues for a long time because of the absence of dynamical friction. Such a long-lasting oscillation may explain the asymmetric structure observed in the centres of M31 and NGC 4486B, may cause the secular flow of gaseous elements distributed in the central regions of galaxies on to the massive object, and may ignite activity in the centres of galaxies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号