首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   1篇
地质学   1篇
天文学   438篇
  2019年   1篇
  2015年   6篇
  2014年   4篇
  2013年   2篇
  2012年   4篇
  2011年   1篇
  2010年   19篇
  2009年   26篇
  2008年   14篇
  2007年   29篇
  2006年   26篇
  2005年   27篇
  2004年   41篇
  2003年   38篇
  2002年   34篇
  2001年   33篇
  2000年   34篇
  1999年   35篇
  1998年   47篇
  1997年   3篇
  1996年   4篇
  1995年   6篇
  1994年   1篇
  1993年   1篇
  1989年   1篇
  1987年   2篇
排序方式: 共有439条查询结果,搜索用时 15 毫秒
61.
We present the Chandra ACIS-S3 data of the old classical nova RR Pic (1925). The source has a count rate of 0.067 ± 0.002 count s−1 in the 0.3–5.0 keV energy range. We detect the orbital period of the underlying binary system in the X-ray wavelengths. We also find that the neutral hydrogen column density differs for orbital minimum and orbital maximum spectra with values  0.25+0.23−0.18× 1022  and  0.64+0.13−0.14× 1022 cm−2  at 3σ confidence level. The X-ray spectrum of RR Pic can be represented by a composite model of bremsstrahlung with a photoelectric absorption, two absorption lines centered around 1.1–1.4 keV and five Gaussian lines centered at emission lines around 0.3–1.1 keV corresponding to various transitions of S, N, O, C, Ne and Fe. The bremsstrahlung temperature derived from the fits ranges from 0.99 to 1.60 keV and the unabsorbed X-ray flux is found to be  2.5+0.4−1.2× 10−13 erg  cm−2 s−1  in the 0.3–5.0 keV range with a luminosity of 1.1 ± 0.2  1031 erg s−1  at 600 pc. We also detect excess emission in the spectrum possibly originating from the reverse shock in the ejecta. A fit with a cooling flow plasma emission model shows enhanced abundances of He, C, N, O and Ne in the X-ray emitting region indicating existence of diffusive mixing.  相似文献   
62.
63.
64.
65.
CP Tuc (AX J2315–592) shows a dip in X-rays which lasts for approximately half the binary orbit and is deeper in soft X-rays compared with hard X-rays. It has been proposed that this dip is due to the accretion stream obscuring the accretion region from view. If CP Tuc were a polar, as has been suggested, then the length of such a dip would make it unique amongst polars since in those polars in which a dip is seen in hard X-rays the dip lasts for only 0.1 of the orbit. We present optical polarimetry and RXTE observations of CP Tuc which show circular polarization levels of ∼10 per cent and find evidence for only one photometric period. These data confirm CP Tuc as a polar. Our modelling of the polarization data implies that the X-ray dip is due to the bulk of the primary accretion region being self-eclipsed by the white dwarf. The energy dependence of the dip is due to a combination of this self-eclipse and also the presence of an X-ray temperature gradient over the primary accretion region.  相似文献   
66.
We address the problem of plasma penetration of astrophysical magnetospheres, an important issue in a wide variety of contexts, ranging from accretion in cataclysmic variables to flows in protostellar systems. We point out that under well-defined conditions, penetration can occur without any turbulent mixing (driven, for example, by Rayleigh–Taylor or Kelvin–Helmholtz instabilities) caused by charge polarization effects, if the inflowing plasma is bounded in the direction transverse to both the flow velocity and the magnetic field. Depolarization effects limit the penetration depth, which nevertheless can, under specific circumstances, be comparable to the size of the magnetosphere. We discuss the effect of ambient medium on plasma propagation across the stellar magnetic field and determine the criteria for deep magnetosphere penetration. We show that, under conditions appropriate to magnetized white dwarfs in AM Her type cataclysmic variables, charge polarization effects can lead to deep penetration of the magnetosphere.  相似文献   
67.
Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs, we calculate the secular evolution of low-mass donor cataclysmic variables (CVs), including those that form with a brown-dwarf donor. Our models confirm the mismatch between the calculated minimum period ( P min70 min) and the observed short-period cut-off (80 min) in the CV period histogram. We find that tidal and rotational corrections applied to the one-dimensional stellar structure equations have no significant effect on the period minimum. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent from the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach P min, and that small-number statistics may hide the period spike for magnetic CVs.  相似文献   
68.
We present a small sample of time-resolved optical spectroscopy of the dwarf nova HL CMa during an outburst state. By combining radial velocity measurements with published data we show that the previously quoted value is not the only candidate for the orbital period of this system. We reduce the significance of daily aliasing but cannot distinguish between two periods at 0.2146±0.0004 and 0.2212±0.0005 d. We show that the low-excitation emission lines are composites from an accretion disc and the companion star, and that high-excitation emission originates in the disc or outflowing material associated with the accreting white dwarf.  相似文献   
69.
We present a comprehensive photometric data set taken over the entire outburst of the eclipsing dwarf nova IP Peg in 1997 September/October. Analysis of the light curves taken over the long rise to the peak-of-outburst shows conclusively that the outburst started near the centre of the disc and moved outwards. This is the first data set that spatially resolves such an outburst. The data set is consistent with the idea that long rise times are indicative of such 'inside-out' outbursts. We show how the thickness and the radius of the disc, along with the mass transfer rate, change over the whole outburst. In addition, we show evidence of the secondary and the irradiation thereof. We discuss the possibility of spiral shocks in the disc; however, we find no conclusive evidence of their existence in this data set.  相似文献   
70.
Continuous CCD photometry of the classical nova DN Gem during 52 nights in the years 1992–1998 reveals a modulation with a period of 0.127844 d. The semi-amplitude is about 0.03 mag. The stability of the variation suggests that it is the orbital period of the binary system. This interpretation makes DN Gem the fourth nova inside the cataclysmic variable (CV) period gap, as defined by Diaz & Bruch, and it bolsters the idea that there is no period gap for classical novae. However, the number of known nova periods is still too small to establish this idea statistically. We eliminate several possible mechanisms for the variation, and propose that the modulation is driven by an irradiation effect. We find that model light curves of an irradiated secondary star fit the data well. The inclination angle of the system is restricted by this model to 10°≲ i ≲65°. We also refine a previous estimate of the distance to the binary system, and find d =1.6±0.6 kpc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号