Land use and cover change(LUCC) is an important indicator of the human-earth system under climate/environmental change,which also serves as a key impact factor of carbon balance,and a major source/sink of soil carbon cycles.The Heihe River Basin(HRB) is known as a typical ecologically fragile area in the arid/semi-arid regions of northwestern China,which makes it more sensitive to the LUCC.However,its sensitivity varies in a broad range of controlling factors,such as soil layers,LUCCs and calculation methods(e.g.the fixed depth method,FD,and the equivalent mass method,ESM).In this study,we performed a meta-analysis to assess the response of soil organic carbon(SOC) and total nitrogen(TN) storage to the LUCC as well as method bias based on 383 sets of SOC data and 148 sets of TN data from the HRB.We first evaluated the calculation methods and found that based on the FD method,the LUCC caused SOC and TN storage to decrease by 17.39% and 14.27%,respectively;while the losses estimated using the ESM method were 19.31% and 18.52%,respectively.The deviations between two methods were mainly due to the fact that the FD method ignores the heterogeneity of soil bulk density(BD),which may underestimate the results subsequently.We then analyzed the response of SOC and TN storage to various types of the LUCC.In particular,when woodland and grassland were converted into cultivated land or other land types,SOC and TN suffered from heavy losses,while other LUCCs had minor influences.Finally,we showed that increasing the depth of the soil layers would reduce the losses of SOC and TN storage.In summary,we identified a series of controlling factors(e.g.soil layer,the LUCC and calculation method) to evaluate the impact of the LUCC on SOC and TN storage in the HRB,which should be considered in future research. 相似文献
A mesoscale iron-enrichment study (SEEDS II) was carried out in the western subarctic Pacific in the summer of 2004. The iron
patch was traced for 26 days, which included observations of the development and the decline of the bloom by mapping with
sulfur hexafluoride. The experiment was conducted at almost the same location and the same season as SEEDS (previous iron-enrichment
experiment). However, the results were very different between SEEDS and SEEDS II. A high accumulation of phytoplankton biomass
(∼18 mg chl m−3) was characteristic of SEEDS. In contrast, in SEEDS II, the surface chlorophyll-a accumulation was lower, 0.8 to 2.48 mg m−3, with no prominent diatom bloom. Photosynthetic competence in terms of Fv/Fm for the total phytoplankton community in the surface waters increased after the iron enrichments and returned to the ambient
level by day 20. These results suggest that the photosynthetic physiology of the phytoplankton assemblage was improved by
the iron enrichments and returned to an iron-stressed condition during the declining phase of the bloom. Pico-phytoplankton
(<2 μm) became dominant in the chlorophyll-a size distribution after the bloom. We observed a nitrate drawdown of 3.8 μM in the patch (day 21), but there was no difference in silicic acid concentration between inside and outside the patch. Mesozooplankton
(copepod) biomass was three to five times higher during the bloom-development phase in SEEDS II than in SEEDS. The copepod
biomass increased exponentially. The grazing rate estimation indicates that the copepod grazing prevented the formation of
an extensive diatom bloom, which was observed in SEEDS, and led to the change to a pico-phytoplankton dominated community
towards the end of the experiment. 相似文献
The organic fraction in soils has a significant influence on heavy metal transport. In this study, the organic carbon content
was measured by dry oxidation procedure from 21 Xuzhou urban roadside soils to assess the relationships between the concentrations
of heavy metals (Pb, Cu, Zn, and Cr) and the amount of organic carbon. The anthropogenic heavy metals (e.g. Pb, Cu, Zn) were
strongly correlated with organic carbon (denoted by Corg−c) extracted by dry oxidation while natural heavy metal (e.g. Cr) showed no correlation to the Corg−c. The anthropogenic heavy metals were also strongly correlated with the amount of the total carbon. These results show that
the anthropogenic heavy metals are mainly enriched in the organic matter in the Xuzhou urban roadside soils. 相似文献
The social cost of carbon – i.e., the marginal present-value cost imposed by greenhouse gas emissions – is determined by a complex interaction between factual assumptions, modeling methods, and value judgments. Among the most crucial factors is society's willingness to tolerate potentially catastrophic environmental risks. To explore this issue, the present analysis employs a stochastic climate–economy model that accounts for uncertainties in baseline economic growth, baseline emissions, greenhouse gas mitigation costs, carbon cycling, climate sensitivity, and climate change damages. In this model, preferences are specified to reflect the high degree of risk aversion revealed by private investment decisions, signaled by the large observed gap between the average rates of return paid by safe and risky financial instruments. In contrast, most climate–economy models assume much lower risk aversion. Given high risk aversion, the analysis finds that investment in climate stabilization yields especially large net benefits by forestalling low-probability threats to long-run human well-being. Accordingly, the social cost of carbon attains the markedly high value of $25,700 per metric ton of carbon dioxide in a baseline scenario in which emissions are unregulated. This value falls to just $4 per ton as the stringency of control measures is successively increased. These results cast doubt on the idea that the social cost of carbon takes on a uniquely defined, objective value that is independent of policy decisions. This does not, however, rule out the use of carbon prices to achieve the benefits of climate stabilization using least-cost mitigation measures. 相似文献