首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1681篇
  免费   28篇
  国内免费   49篇
测绘学   3篇
大气科学   9篇
地球物理   55篇
地质学   155篇
海洋学   47篇
天文学   1463篇
综合类   9篇
自然地理   17篇
  2024年   4篇
  2023年   5篇
  2022年   7篇
  2021年   11篇
  2020年   3篇
  2019年   13篇
  2018年   7篇
  2017年   7篇
  2016年   8篇
  2015年   20篇
  2014年   16篇
  2013年   26篇
  2012年   29篇
  2011年   25篇
  2010年   23篇
  2009年   143篇
  2008年   101篇
  2007年   163篇
  2006年   146篇
  2005年   133篇
  2004年   126篇
  2003年   130篇
  2002年   115篇
  2001年   106篇
  2000年   92篇
  1999年   101篇
  1998年   113篇
  1997年   15篇
  1996年   13篇
  1995年   11篇
  1994年   4篇
  1993年   8篇
  1992年   4篇
  1991年   2篇
  1990年   7篇
  1989年   7篇
  1988年   4篇
  1987年   4篇
  1984年   1篇
  1983年   1篇
  1981年   4篇
排序方式: 共有1758条查询结果,搜索用时 31 毫秒
121.
利用耦合的吸积-喷流模型,对巨椭圆星系M 87(NGC 4486)核区的高分辨率观测到的多波段能谱分布进行了研究,重点是核区的X射线辐射起源问题.研究结果表明,M 87核区的X射线辐射是由喷流主导的,而不是此前认为的由径移主导的吸积流(ADAFs)主导的.  相似文献   
122.
In this paper we make an effort to understand the interaction of turbulence generated by the magnetorotational instability (MRI) with turbulence from other sources, such as supernova explosions (SNe) in galactic disks. First we perform a linear stability analysis (LSA) of non‐ideal MRI to derive the limiting value of Ohmic diffusion that is needed to inhibit the growth of the instability for different types of rotation laws. With the help of a simple analytical expression derived under first‐order smoothing approximation (FOSA), an estimate of the limiting turbulence level and hence the turbulent diffusion needed to damp the MRI is derived. Secondly, we perform numerical simulations in local cubes of isothermal nonstratified gas with external forcing of varying strength to see whether the linear result holds for more complex systems. Purely hydrodynamic calculations with forcing, rotation and shear are made for reference purposes, and as expected, non‐zero Reynolds stresses are found. In the magnetohydrodynamic calculations, therefore, the total stresses generated are a sum of the forcing and MRI contributions. To separate these contributions, we perform reference runs with MRI‐stable shear profiles (angular velocity increasing outwards), which suggest that the MRI‐generated stresses indeed become strongly suppressed as function of the forcing. The Maxwell to Reynolds stress ratio is observed to decrease by an order of magnitude as the turbulence level due to external forcing exceeds the predicted limiting value, which we interpret as a sign of MRI suppression. Finally, we apply these results to estimate the limiting radius inside of which the SN activity can suppress the MRI, arriving at a value of 14 kpc (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
123.
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi‐analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha‐viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha‐accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
124.
125.
126.
Hydrodynamic models of a young binary accreting matter from the remnants of a protostellar cloud have been calculated by the SPH method. Periodic variations in column density in projection onto the primary component are shown to take place at low inclinations of the binary plane to the line of sight. These can result in periodic extinction variations accompanied by brightness variations in the primary. Generally, there can be three periodic components. The first component has a period equal to the orbital one and is attributable to the streams of matter penetrating into the inner regions of the binary. The second component has a period that is a factor of 5–8 longer than the orbital one and is related to the density waves generated in a circumbinary (CB) disk. Finally, the third, longest period is attributable to the precession of the inner CB disk regions. The relationship between the amplitudes of these cycles depends on the model parameters as well as on the inclination and orientation of the binary in space. We show that at a dust-togas ratio of 1: 100 and amass extinction coefficient of 250 cm2 g?1, the amplitude of the V-band brightness variations in the primary component can reach 1 m at a mass accretion rate onto the binary components of 10.8?8 M yr?1 and a 10° inclination of the binary plane to the line of sight. We discuss possible applications of the model to young, pre-main-sequence stars.  相似文献   
127.
We present results from three XMM–Newton observations of the M31 low mass X-ray binary (LMXB) XMMU J004314.4+410726.3 (Bo 158), spaced over 3 d in 2004 July. Bo 158 was the first dipping LMXB to be discovered in M31. Periodic intensity dips were previously seen to occur on a 2.78-h period, due to absorption in material that is raised out of the plane of the accretion disc. The report of these observations stated that the dip depth was anticorrelated with source intensity. In light of the 2004 XMM–Newton observations of Bo 158, we suggest that the dip variation is due to precession of the accretion disc. This is to be expected in LMXBs with a mass ratio ≲0.3 (period ≲4 h), as the disc reaches the 3:1 resonance with the binary companion, causing elongation and precession of the disc. A smoothed particle hydrodynamics simulation of the disc in this system shows retrograde rotation of a disc warp on a period of  ∼11 P orb  , and prograde disc precession on a period of  29 ± 1 P orb  . This is consistent with the observed variation in the depth of the dips. We find that the dipping behaviour is most likely to be modified by the disc precession, hence we predict that the dipping behaviour repeats on an  81 ± 3 h  cycle.  相似文献   
128.
The term 'dynamo' means different things to the laboratory fusion plasma and astrophysical plasma communities. To alleviate the resulting confusion and to facilitate interdisciplinary progress, we pinpoint conceptual differences and similarities between laboratory plasma dynamos and astrophysical dynamos. We can divide dynamos into three types: 1. magnetically dominated helical dynamos which sustain a large-scale magnetic field against resistive decay and drive the magnetic geometry towards the lowest energy state, 2. flow-driven helical dynamos which amplify or sustain large-scale magnetic fields in an otherwise turbulent flow and 3. flow-driven non-helical dynamos which amplify fields on scales at or below the driving turbulence. We discuss how all three types occur in astrophysics whereas plasma confinement device dynamos are of the first type. Type 3 dynamos require no magnetic or kinetic helicity of any kind. Focusing on Types 1 and 2 dynamos, we show how different limits of a unified set of equations for magnetic helicity evolution reveal both types. We explicitly describe a steady-state example of a Type 1 dynamo, and three examples of Type 2 dynamos: (i) closed volume and time dependent; (ii) steady state with open boundaries; (iii) time dependent with open boundaries.  相似文献   
129.
130.
Hydrodynamically stationary, spherically symmetric accretion onto a neutron star is examined taking the reverse effect of radiation into account. It is assumed that the plasma flow is adiabatic and that radiation is generated in a thin surface layer of the neutron star, where incoming particles are slowed down. It is shown that for stationary accretion, neither a stop, nor a substantial slowing down of the accretion flux is possible for any physically allowed conditions far from the neutron star.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号