首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1157篇
  免费   0篇
  国内免费   1篇
地球物理   9篇
地质学   1篇
天文学   1146篇
综合类   2篇
  2024年   1篇
  2019年   1篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   5篇
  2010年   4篇
  2009年   112篇
  2008年   76篇
  2007年   115篇
  2006年   104篇
  2005年   84篇
  2004年   105篇
  2003年   105篇
  2002年   91篇
  2001年   91篇
  2000年   69篇
  1999年   79篇
  1998年   97篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1990年   3篇
排序方式: 共有1158条查询结果,搜索用时 265 毫秒
11.
12.
We present the results of a systematic investigation of spectral evolution in the Z source GX 349+2, using data obtained during 1998 with the Proportional Counter Array (PCA) on-board the RXTE satellite. The source traced a extended normal branch (NB) and flaring branch (FB) in the colour–colour diagram (CD) and the hardness-intensity diagram (HID) during these observations. The spectra at different positions of the Z-track were best fitted by a model consisting of a disc blackbody and a Comptonized spectrum. A broad (Gaussian) iron line at ∼6.7 keV is also required to improve the fit. The spectral parameters showed a systematic and significant variation with the position along the Z-track. The evolution in spectral parameters is discussed in view of the increasing mass accretion rate scenario, proposed to explain the motion of Z sources in the CD and the HID.  相似文献   
13.
We present new observations of the rapid oscillations in the dwarf nova VW Hyi, made late in outburst. These dwarf nova oscillations (DNOs) increase in period until they reach 33 s, when a transition to a strong 1st harmonic and weak fundamental takes place. After further period increase, the 2nd harmonic appears; often all three components are present simultaneously. This 1:2:3 frequency suite is similar to what has been seen in some neutron star and black hole X-ray binaries, but has not previously been seen in a cataclysmic variable. When studied in detail, the fundamental and 2nd harmonic vary similarly in phase, but the 1st harmonic behaves independently, though keeping close to twice the frequency of the fundamental. The fundamental period of the DNOs, as directly observed or inferred from the harmonics, increases to ∼100 s before the oscillation disappears as the star reaches quiescence. Its maximum period is close to that of the 'longer-period' DNOs observed in VW Hyi. The quasi-periodic oscillations (QPOs), which have fundamental periods 400–1000 s, behave in the same way, showing 1st and 2nd harmonics at approximately the same times as the DNOs. We explore some possible models. One in which the existence of the 1st harmonic is due to the transition from viewing a single accretion region to viewing two regions, and the rate of accretion on to the primary is modulated at the frequency of the 1st harmonic, as in the 'beat frequency model', can generate the suite of DNO frequencies observed. But the behaviour of the QPOs is not yet understood.  相似文献   
14.
15.
During re-processing and analysis of the entire ROSAT Wide Field Camera (WFC) pointed observations data base, we discovered a serendipitous, off-axis detection of the cataclysmic variable SW UMa at the onset of its 1997 October superoutburst. Although long outbursts in this SU UMa-type system are known to occur every ∼ 450 d, none had ever been previously observed in the extreme ultra-violet (EUV) by ROSAT . The WFC observations began just ≈13 hr after the optical rise was detected. With a peak count rate of ∼ 4.5 count s−1 in the S1 filter, SW UMa was temporarily the third brightest object in the sky in this waveband. Over the next ≈19 hr the measured EUV flux dropped to < 2 count s−1, while the optical brightness remained essentially static at m v∼11 . Similar behaviour has also been recently reported in the EUV light curve of the related SU UMa-type binary OY Car during superoutburst, as reported by Mauche & Raymond. In contrast, U Gem-type dwarf novae show no such early EUV dip during normal outbursts. Therefore, this feature may be common in superoutbursts of SU UMa-like systems. We expand on ideas first put forward by Osaki and Mauche & Raymond and offer an explanation for this behaviour by examining the interplay between the thermal and tidal instabilities that affect the accretion discs in these systems.  相似文献   
16.
We present archival Rossi X-ray Timing Explorer ( RXTE ) and simultaneous Advanced Satellite for Cosmology and Astrophysics ( ASCA ) data of the eclipsing low mass X-ray binary (LMXB) X 1822−371. Our spectral analysis shows that a variety of simple models can fit the spectra relatively well. Of these models, we explore two in detail through phase-resolved fits. These two models represent the case of a very optically thick and a very optically thin corona. While systematic residuals remain at high energies, the overall spectral shape is well approximated. The same two basic models are fitted to the X-ray light curve, which shows sinusoidal modulations interpreted as absorption by an opaque disc rim of varying height. The geometry we infer from these fits is consistent with previous studies: the disc rim reaches out to the tidal truncation radius, while the radius of the corona (approximated as spherical) is very close to the circularization radius. Timing analysis of the RXTE data shows a time-lag from hard to soft consistent with the coronal size inferred from the fits. Neither the spectra nor the light curve fits allow us to rule out either model, leaving a key ingredient of the X 1822−371 puzzle unsolved. Furthermore, while previous studies were consistent with the central object being a 1.4 M neutron star, which has been adopted as the best guess scenario for this system, our light curve fits show that a white dwarf or black hole primary can work just as well. Based on previously published estimates of the orbital evolution of X 1822−371, however, we suggest that this system contains either a neutron star or a low mass (≲2.5 M) black hole and is in a transitional state of duration shortward of 107 yr.  相似文献   
17.
We present a new mapping algorithm, the Accretion Stream Mapping (ASM), which uses the full phase-coverage of a light curve to derive spatially resolved intensity distributions along the accretion stream in magnetic cataclysmic variables of AM Herculis type (polars). The surface of the accretion stream is approximated as a 12-sided (duodecadon-shaped) tube. After successfully testing this method on artificial data we applied it to emission-line light curves of H β , H γ and He  ii λ 4686 of the bright eclipsing polar HU Aqr. We find hydrogen and helium line emission bright in the threading region of the stream where the stream couples on to magnetic field lines. It is particularly interesting that the stream is bright on the irradiated side facing the white dwarf, which highlights the interplay of collisional and radiative excitation/ionization.  相似文献   
18.
We compare analytical expressions of precession rates from apsidal (positive) superhumps in close binary systems with numerical disc simulation results and observed values. In the analytical expressions, we include both the dynamical effects on the precession of the disc and effects caused by pressure forces that have been theorized to provide a retrograde effect (i.e. slowing) on the prograde disc precession. We establish new limits on density wave pitch angle to a normalized disc sound speed 60≥Ωorb  d  tan  i / c >2.214 . Using average values for the density wave pitch angle i and speed of sound c , we find good correlation between numerical simulations and the analytical expression for the apsidal superhump period excess, which includes both the prograde and retrograde effects, for mass ratios of 0.025≤ q ≤0.33 . We also show good correlations with the four known eclipsing systems, OY Car, Z Cha, HT Cas, and WZ Sge. Our analytical expression for apsidal superhump period excess as a function of orbital period is consistent with the trend found in observed systems.  相似文献   
19.
We present spectroscopy of the eclipsing recurrent nova U Sco. The radial velocity semi-amplitude of the primary star was found to be     from the motion of the wings of the He  ii λ 4686-Å emission line. By detecting weak absorption features from the secondary star, we find its radial velocity semi-amplitude to be     . From these parameters, we obtain a mass of     for the white dwarf primary star and a mass of     for the secondary star. The radius of the secondary is calculated to be     , confirming that it is evolved. The inclination of the system is calculated to be     , consistent with the deep eclipse seen in the light-curves. The helium emission lines are double-peaked, with the blueshifted regions of the disc being eclipsed prior to the redshifted regions, clearly indicating the presence of an accretion disc. The high mass of the white dwarf is consistent with the thermonuclear runaway model of recurrent nova outbursts, and confirms that U Sco is the best Type Ia supernova progenitor currently known. We predict that U Sco is likely to explode within ∼700 000 yr.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号