首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   5篇
  国内免费   17篇
大气科学   2篇
地球物理   18篇
地质学   70篇
海洋学   4篇
天文学   118篇
综合类   5篇
自然地理   3篇
  2022年   1篇
  2019年   2篇
  2017年   8篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   3篇
  2011年   19篇
  2010年   18篇
  2009年   21篇
  2008年   22篇
  2007年   21篇
  2006年   10篇
  2005年   20篇
  2004年   21篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有220条查询结果,搜索用时 15 毫秒
161.
We present a quantitative analysis of CO thermal emissions discovered on the nightside of Titan by Baines et al. [2005. The atmospheres of Saturn and Titan in the near-infrared: First results of Cassini/VIMS. Earth, Moon, and Planets, 96, 119–147]. in Cassini/VIMS spectral imagery. We identify these emission features as the P and R branches of the 1-0 vibrational band of carbon monoxide (CO) near 4.65 μm. For CH3D, the prominent Q branch of the ν2 fundamental band of CH3D near 4.55 μm is apparent. CO2 emissions from the strong v3 vibrational band are virtually absent, indicating a CO2 abundance several orders of magnitude less than CO, in agreement with previous investigations. Analysis of CO emission spectra obtained over a variety of altitudes on Titan's nightside limb indicates that the stratospheric abundance of CO is 32±15 ppm, and together with other recent determinations, suggests a vertical distribution of CO nearly constant at this value from the surface throughout the troposphere to at least the stratopause near 300 km altitude. The corresponding total atmospheric content of CO in Titan is 2.9±1.5×1014 kg. Given the long lifetime of CO in the oxygen-poor Titan atmosphere (0.5–1.0 Gyr), we find a mean CO atmospheric production rate of 6±3×105 kg yr−1. Given the lack of primordial heavy noble gases observed by Huygens [Niemann et al., 2005. The abundances of constituents of Titan's atmosphere from the GCMS on the Huygens probe. Nature, 438, 779–784], the primary source of atmospheric CO is likely surface emissions. The implied CO/CH4 mixing ratio of near-surface material is 1.8±0.9×10−4, based on an average methane surface emission rate over the past 0.5 Gyr of 1.3×10−13 gm cm−2 s−1 as required to balance hydrocarbon haze production via methane photolysis [Wilson and Atreya, 2004. Current state of modeling the photochemistry of Titan's mutually dependent atmosphere and ionosphere. J. Geophys. Res. 109, E06002 Doi:10.1029/2003JE002181]. This low CO/CH4 ratio is much lower than expected for the sub-nebular formation region of Titan and supports the hypothesis [e.g., Atreya et al., 2005. Methane on Titan: photochemical-meteorological-hydrogeochemical cycle. Bull. Am. Astron. Soc. 37, 735] that the conversion of primordial CO and other carbon-bearing materials into CH4-enriched clathrate-hydrates occurs within the deep interior of Titan via the release of hydrogen through the serpentinization process followed by Fischer–Tropsch catalysis. The time-averaged predicted emission rate of methane-rich surface materials is 0.02 km3 yr−1, a value significantly lower than the rate of silicate lava production for the Earth and Venus, but nonetheless indicative of significant active geological processes reshaping the surface of Titan.  相似文献   
162.
Loki is the largest patera and the most energetic hotspot on Jupiter's moon Io, in turn the most volcanically active body in the Solar System, but the nature of the activity remains enigmatic. We present detailed analysis of Galileo Near-Infrared Mapping Spectrometer (NIMS) and PhotoPolarimeter/Radiometer (PPR) observations covering the 1.5-100 μm wavelength range during the I24, I27, and I32 flybys. The general pattern of activity during these flybys is consistent with previously proposed models of a resurfacing wave periodically crossing a silicate lava lake. In particular our analysis of the I32 NIMS observations shows, over much of the observed patera, surface temperatures and implied ages closely matching those expected for a wave advancing counterclockwise at 0.94-1.38 km/day. The age pattern is different than other published analyses which do not show as clearly this azimuthal pattern. Our analysis also shows two additional distinctly different patera surfaces. The first is located along the inner and outer margins where components with a 3.00-4.70-μm color temperature of 425 K exist. The second is located at the southwestern margin where components with a 550-K color temperature exist. Although the high temperatures could be caused by disruption of a lava lake crust, some additional mechanism is required to explain why the southwest margin is different from the inner or outer ones. Finally, analysis of the temperature profiles across the patera reveal a smoothness that is difficult to explain by simple lava cooling models. Paradoxically, at a subpixel level, wide temperature distributions exist which may be difficult to explain by just the presence of hot cracks in the lava crust. The resurfacing wave and lava cooling models explain well the overall characteristics of the observations. However, additional physical processes, perhaps involving heat transport by volatiles, are needed to explain the more subtle features.  相似文献   
163.
Geophysical data have led to the interpretation that Beta Regio, a 2000×25000 km wide topographic rise with associated rifting and volcanism, formed due to the rise of a hot mantle diapir interpreted to be caused by a mantle plume. We have tested this hypothesis through detailed geologic mapping of the V-17 quadrangle, which includes a significant part of the Beta Regio rise, and reconnaissance mapping of the remaining parts of this region. Our analysis documents signatures of an early stage of uplift in the formation of the Agrona Linea fracture belts before the emplacement of regional plains and their deformation by wrinkle ridging. We see evidence that the Theia rift-associated volcanism occurred during the first part of post-regional-plains time and cannot exclude that it continued into later time. We also see evidence that Devana Chasma rifting was active during the first and the second parts of post-regional-plains time. These data are consistent with uplift, rifting and volcanism associated with a mantle diapir. Geophysical modeling shows that diapiric upwelling may continue at the present time. Together these data suggest that the duration of mantle diapir activity was as long as several hundred million years. The regional plains north of Beta rise and the area east and west of it were little affected by the Beta-forming plume, but the broader area (at least 4000 km across), whose center-northern part includes Beta Regio, could have experienced earlier uplift as morphologically recorded in formation of tessera transitional terrain.  相似文献   
164.
《Geodinamica Acta》2013,26(1):81-100
The North Volcanic Zone of Iceland was unglaciated during most interglacials. Subsequently, the region was covered by the Weichselian ice cap. A widespread interglacial complex, the Sy?ra Formation, has been mapped in this zone. It covers probably O.I.S.5e, 5d and 5c. Its formation and preservation are discussed in terms of rift and volcanism activity, in interrelations with the former deglaciation. A topographic bulge, presumed of glacio-isostatic origin, limited the downstream drainage of the Jökulsa a Fjolum river enabling the interglacial sedimentation and the excavation of one of the canyons of Dettifoss. Effusive volcanic activity in the rift is important prior to the Sy?ra 4 unit in association with an early abrupt event (SY2: Sy?ra ash), related to a phreato-magmatic eruption at the eastern hyaloclastite ridge or from the Askja volcano and to jökulhlaup events. It corresponds probably to ash Zone B as defined by Sejrup et al., (1989) on the Northern Iceland shelf. The previous activity of hyaloclastite ridge is recorded during the Marine Isotope Stage 6 (MIS 6 = Saalian) and its deglaciation, a younger effusive event is dated at 80 ka. The Interglacial paleo-seismic region is similar to the present one; during deglaciation, the seismic zone is widened, up to 60 km to the East. Continuous micro-seismicity related to dyke intrusion and effusive or phreato-magmatic eruptions develop at the onset of deglaciation. It is discrete during the full interglacials, and most intense during pyroclastic eruptions. A comparison with the Late Glacial/Holocene deglaciation is provided in the same region.  相似文献   
165.
Dark paterae on the jovian satellite Io are evidence of recent volcanic activity. Some paterae appear to be entirely filled with dark volcanic material, while others have only partially darkened floors. Dark paterae have area and heat flow longitudinal distributions that are bimodal as well as anti-correlated with the longitudinal distribution of mountains on Io at a global scale. As part of our study of Io’s total heat flow, we have examined the darkest paterae and quantified their thermal emission in order to assess their contribution. This is the first time that the areas of the dark material in these paterae have been measured with such precision and correlated with their thermal emission. Dark paterae yield a significantly larger contribution to Io’s heat flow than dark volcanic fields. Dark paterae (including Loki Patera) yield at least ∼4 × 1013 W or ∼40% of Io’s total heat flow. In comparison, dark flow fields yield ∼1013 W or ∼10% of Io’s total heat flow. Of the total heat loss from dark paterae, Loki Patera alone yields ∼1013 W or ∼10% of Io’s total thermal emission.  相似文献   
166.
The composition and detailed morphology of dome-shaped features located in western Arcadia Planitia and just west of Utopia Planitia were examined in this study utilizing data from Mars Reconnaissance Orbiter and Mars Odyssey sensors. The domes have diameters averaging 1.5 km and heights averaging 160 m, and are generally dark-toned, although some are lighter toned or have split dark and light-toned surfaces. The domes are surrounded by annular deposits comprising, with increasing distance from the domes, dark-toned aprons, light-toned aureoles, and dark-toned aureoles. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data over several areas in the western Arcadia region show that spectra from the flanks of several domes have 1 and 2 μm absorption features consistent with the presence of olivine and a high-Ca pyroxene, nominally augite. Modified Gaussian Model (MGM) analysis of these spectra indicates Fe-rich olivine compositions. The tops of domes and the aprons surrounding many domes have negative sloping flat spectra in the near infrared, which is consistent with tachylite-rich, glassy compositions. High Resolution Imaging Science Experiment (HiRISE) images over several domes indicate that relatively high thermal inertia values associated with the tops of domes can be attributed to boulder strewn surfaces. HiRISE images also reveal that light-toned aureoles around domes consist of crenulated ground resembling “brain terrain” textures previously described for ice-rich concentric crater fill elsewhere on the northern plains. The plains surrounding the domes also display lineations that are interpreted to be lava channels or tubes. The combination of volcanic and ice-related features are consistent with the domes having formed as cryptodomes in the near sub-surface. We suggest that the domes could be basaltic in composition if the magmas were degassed and/or highly crystallized, and thus more viscous than typical basaltic magmas. The intrusion of these magmas into an ice-rich horizon would have produced a pervasively jointed chilled margin on the domes, which, once the domes were exposed, would have mechanically weathered to form the dark aprons. The domes could have served as local centers for ice accumulation during periods of high orbital obliquity, which ultimately would have led to the formation of the “brain terrain” surrounding the features. The domes represent late stage volcanic products on the northern plains of Mars and associated features provide more evidence for the role that ice accumulation and modification has played in recent martian history.  相似文献   
167.
The surface area of Venus (∼460×106 km2) is ∼90% of that of the Earth. Using Magellan radar image and altimetry data, supplemented by Venera-15/16 radar images, we compiled a global geologic map of Venus at a scale of 1:10 M. We outline the history of geological mapping of the Earth and planets to illustrate the importance of utilizing the dual stratigraphic classification approach to geological mapping. Using this established approach, we identify 13 distinctive units on the surface of Venus and a series of structures and related features. We present the history and evolution of the definition and characterization of these units, explore and assess alternate methods and approaches that have been suggested, and trace the sequence of mapping from small areas to regional and global scales. We outline the specific defining nature and characteristics of these units, map their distribution, and assess their stratigraphic relationships. On the basis of these data, we then compare local and regional stratigraphic columns and compile a global stratigraphic column, defining rock-stratigraphic units, time-stratigraphic units, and geological time units. We use superposed craters, stratigraphic relationships and impact crater parabola degradation to assess the geologic time represented by the global stratigraphic column. Using the characteristics of these units, we interpret the geological processes that were responsible for their formation. On the basis of unit superposition and stratigraphic relationships, we interpret the sequence of events and processes recorded in the global stratigraphic column. The earliest part of the history of Venus (Pre-Fortunian) predates the observed surface geological features and units, although remnants may exist in the form of deformed rocks and minerals. We find that the observable geological history of Venus can be subdivided into three distinctive phases. The earlier phase (Fortunian Period, its lower stratigraphic boundary cannot be determined with the available data sets) involved intense deformation and building of regions of thicker crust (tessera). This was followed by the Guineverian Period. Distributed deformed plains, mountain belts, and regional interconnected groove belts characterize the first part and the vast majority of coronae began to form during this time. The second part of the Guineverian Period involved global emplacement of vast and mildly deformed plains of volcanic origin. A period of global wrinkle ridge formation largely followed the emplacement of these plains. The third phase (Atlian Period) involved the formation of prominent rift zones and fields of lava flows unmodified by wrinkle ridges that are often associated with large shield volcanoes and, in places, with earlier-formed coronae. Atlian volcanism may continue to the present. About 70% of the exposed surface of Venus was resurfaced during the Guineverian Period and only about 16% during the Atlian Period. Estimates of model absolute ages suggest that the Atlian Period was about twice as long as the Guineverian and, thus, characterized by significantly reduced rates of volcanism and tectonism. The three major phases of activity documented in the global stratigraphy and geological map, and their interpreted temporal relations, provide a basis for assessing the geodynamical processes operating earlier in Venus history that led to the preserved record.  相似文献   
168.
We present the observations of Io acquired by the Solid State Imaging (SSI) experiment during the Galileo Millennium Mission (GMM) and the strategy we used to plan the exploration of Io. Despite Galileo's tight restrictions on data volume and downlink capability and several spacecraft and camera anomalies due to the intense radiation close to Jupiter, there were many successful SSI observations during GMM. Four giant, high-latitude plumes, including the largest plume ever observed on Io, were documented over a period of eight months; only faint evidence of such plumes had been seen since the Voyager 2 encounter, despite monitoring by Galileo during the previous five years. Moreover, the source of one of the plumes was Tvashtar Catena, demonstrating that a single site can exhibit remarkably diverse eruption styles—from a curtain of lava fountains, to extensive surface flows, and finally a ∼400 km high plume—over a relatively short period of time (∼13 months between orbits I25 and G29). Despite this substantial activity, no evidence of any truly new volcanic center was seen during the six years of Galileo observations. The recent observations also revealed details of mass wasting processes acting on Io. Slumping and landsliding dominate and occur in close proximity to each other, demonstrating spatial variation in material properties over distances of several kilometers. However, despite the ubiquitous evidence for mass wasting, the rate of volcanic resurfacing seems to dominate; the floors of paterae in proximity to mountains are generally free of debris. Finally, the highest resolution observations obtained during Galileo's final encounters with Io provided further evidence for a wide diversity of surface processes at work on Io.  相似文献   
169.
The use of genetic algorithms in geophysical inverse problems is a relatively recent development and offers many advantages in dealing with the non-linearity inherent in such applications. We have implemented a genetic algorithm to efficiently invert a set of gravity data. Employing several fixed density contrasts, this algorithm determines the geometry of the sources of the anomaly gravity field in a 3-D context. The genetic algorithms, based on Darwins theory of evolution, seek the optimum solution from an initial population of models, working with a set of parameters by means of modifications in successive iterations or generations. This searching method traditionally consists of three operators (selection, crossover and mutation) acting on each generation, but we have added a further one, which smoothes the obtained models. In this way, we have designed an efficient inversion gravity method, confirmed by both a synthetic example and a real data set from the island of Fuerteventura. In the latter case, we identify crustal structures related to the origin and evolution of the island. The results show a clear correlation between the sources of gravity field in the model and the three volcanic complexes recognized in Fuerteventura by other geological studies.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号