首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   198篇
  免费   5篇
  国内免费   17篇
大气科学   2篇
地球物理   18篇
地质学   70篇
海洋学   4篇
天文学   118篇
综合类   5篇
自然地理   3篇
  2022年   1篇
  2019年   2篇
  2017年   8篇
  2015年   2篇
  2014年   5篇
  2013年   6篇
  2012年   3篇
  2011年   19篇
  2010年   18篇
  2009年   21篇
  2008年   22篇
  2007年   21篇
  2006年   10篇
  2005年   20篇
  2004年   21篇
  2003年   8篇
  2002年   2篇
  2001年   3篇
  2000年   4篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   2篇
  1993年   4篇
  1992年   3篇
  1991年   1篇
  1988年   2篇
  1987年   1篇
  1983年   1篇
排序方式: 共有220条查询结果,搜索用时 62 毫秒
141.
Volcanism has been a major process during most of the geologic history of Mars. Based on data collected from terrestrial basaltic eruptions, we assume that the volatile content of martian lavas was typically ∼0.5 wt.% water, ∼0.7 wt.% carbon dioxide, ∼0.14 wt.% sulfur dioxide, and contained several other important volatile constituents. From the geologic record of volcanism on Mars we find that during the late Noachian and through the Amazonian volcanic degassing contributed ∼0.8 bar to the martian atmosphere. Because most of the outgassing consisted of greenhouse gases (i.e., CO2 and SO2) warmer surface temperatures resulting from volcanic eruptions may have been possible. Our estimates suggest that ∼1.1 × 1021 g (∼8 ± 1 m m−2) of juvenile water were released by volcanism; slightly more than half the amount contained in the north polar cap and atmosphere. Estimates for released CO2 (1.6 × 1021 g) suggests that a large reservoir of carbon dioxide is adsorbed in the martian regolith or alternatively ∼300 cm cm−2 of carbonates may have formed, although these materials would not occur readily in the presence of excess SO2. Up to ∼120 cm cm−2 (2.2 × 1020 g) of acid rain (H2SO4) may have precipitated onto the martian surface as the result of SO2 degassing. The hydrogen flux resulting from volcanic outgassing may help explain the martian atmospheric D/H ratio. The amount of outgassed nitrogen (∼1.3 mbar) may also be capable of explaining the martian atmospheric 15N/14N ratio. Minor gas constituents (HF, HCl, and H2S) could have formed hydroxyl salts on the surface resulting in the physical weathering of geologic materials. The amount of hydrogen fluoride emitted (1.82 × 1018 g) could be capable of dissolving a global layer of quartz sand ∼5 mm thick, possibly explaining why this mineral has not been positively identified in spectral observations. The estimates of volcanic outgassing presented here will be useful in understanding how the martian atmosphere evolved over time.  相似文献   
142.
Dark flow fields on the jovian satellite Io are evidence of current or recent volcanic activity. We have examined the darkest volcanic fields and quantified their thermal emission in order to assess their contribution to Io’s total heat flow. Loki Patera, the largest single source of heat flow on Io, is a convenient point of reference. We find that dark volcanic fields are more common in the hemisphere opposite Loki Patera and this large scale concentration is manifested as a maximum in the longitudinal distribution (near ∼200 °W), consistent with USGS global geologic mapping results. In spite of their relatively cool temperatures, dark volcanic fields contribute almost as much to Io’s heat flow as Loki Patera itself because of their larger areal extent. As a group, dark volcanic fields provide an asymmetric component of ∼5% of Io’s global heat flow or ∼5 × 1012 W.  相似文献   
143.
The northernmost part of the oil-producing Austral Basin, known as Aisén Basin or Río Mayo Embayment (in central Patagonian Cordillera; 43–46°S), is a special area within the basin where the interplay between volcanism and the initial stages of its development can be established. Stratigraphic, paleontologic and five new U–Pb SHRIMP age determinations presented here indicate that the Aisén Basin was synchronous with the later phases of volcanism of the Ibáñez Formation for at least 11 m.yr. during the Tithonian to early Hauterivian. In this basin marine sedimentary rocks of the basal units of the Coihaique Group accumulated overlying and interfingering with the Ibáñez Formation, which represents the youngest episode of volcanism of a mainly Jurassic acid large igneous province (Chon Aike Province). Five new U–Pb SHRIMP magmatic ages ranging between 140.3 ± 1.0 and 136.1 ± 1.6 Ma (early Valanginian to early Hauterivian) were obtained from the Ibáñez Formation whilst ammonites from the overlying and interfingering Toqui Formation, the basal unit of the Coihaique Group, indicate Tithonian, early Berriasian and late Berriasian ages. The latter was a synvolcanic shallow marine facies accumulated in an intra-arc setting, subsequently developed into a retro-arc basin.  相似文献   
144.
Saturn's diffuse E ring is the largest ring of the Solar System and extends from about (Saturn radius RS=60,330 km) to at least encompassing the icy moons Mimas, Enceladus, Tethys, Dione, and Rhea. After Cassini's insertion into her saturnian orbit in July 2004, the spacecraft performed a number of equatorial as well as steep traversals through the E ring inside the orbit of the icy moon Dione. Here, we report about dust impact data we obtained during 2 shallow and 6 steep crossings of the orbit of the dominant ring source—the ice moon Enceladus. Based on impact data of grains exceeding 0.9 μm we conclude that Enceladus feeds a torus populated by grains of at least this size along its orbit. The vertical ring structure at agrees well with a Gaussian with a full-width-half-maximum (FWHM) of ∼4200 km. We show that the FWHM at is due to three-body interactions of dust grains ejected by Enceladus' recently discovered ice volcanoes with the moon during their first orbit. We find that particles with initial speeds between 225 and 235 m s−1 relative to the moon's surface dominate the vertical distribution of dust. Particles with initial velocities exceeding the moon's escape speed of 207 m s−1 but slower than 225 m s−1 re-collide with Enceladus and do not contribute to the ring particle population. We find the peak number density to range between 16×10−2 m−3 and 21×10−2 m−3 for grains larger 0.9 μm, and 2.1×10−2 m−3 and 7.6×10−2 m−3 for grains larger than 1.6 μm. Our data imply that the densest point is displaced outwards by at least with respect of the Enceladus orbit. This finding provides direct evidence for plume particles dragged outwards by the ambient plasma. The differential size distribution for grains >0.9 μm is described best by a power law with slopes between 4 and 5. We also obtained dust data during ring plane crossings in the vicinity of the orbits of Mimas and Tethys. The vertical distribution of grains >0.8 μm at Mimas orbit is also well described by Gaussian with a FWHM of ∼5400 km and displaced southwards by ∼1200 km with respect to the geometrical equator. The vertical distribution of ring particles in the vicinity of Tethys, however, does not match a Gaussian. We use the FWHM values obtained from the vertical crossings to establish a 2-dimensional model for the ring particle distribution which matches our observations during vertical and equatorial traversals through the E ring.  相似文献   
145.
The origin of the martian chaotic terrains is still uncertain; and a variety of geologic scenarios have been proposed. We provide topographic profiles of different chaos landscapes, notably Aureum and Hydraotes Chaos, showing that an initial shallow ground subsidence occurred at the first step of the chaos formation. We infer that the subsidence was caused by intrusion of a volcanic sill; which could have produced consequent melting as well as release of ground water from disrupted aquifer. Signs of a volcanic activity are observed on the floor of Hydraotes Chaos, a complex and deep depression located at the junction of three channels. The volcanic activity is represented by small, 0.5 to 1.5 km diameter, rounded cones with summit pits. The cone's size and morphology, as well as the presence of possible surrounding lava flows, suggest that they are primary volcanic cones similar to terrestrial cinder cones. The identification of volcanic activity on the deepest chaos, where the lower crustal thickness and the faults/fractures system contributed to the magma rising, reveals that magmatic activity, proved by the cones, and possibly help by structural activity, has been a major factor in the formation of chaotic terrains.  相似文献   
146.
We apply improved kinetic modeling of electron transport in the martian thermosphere to fit pitch angle distributions measured by the Mars Global Surveyor (MGS) Magnetometer/Electron Reflectometer (MAG/ER), together with appropriate filtering, binning, averaging and error correction techniques, to create the most reliable ER global map to date of crustal magnetic field magnitude at 185 km altitude, with twice the spatial resolution and considerably higher sensitivity to crustal fields than global maps of magnetic field components produced with MAG data alone. This map compares favorably to sparsely sampled dayside MAG data taken at similar altitudes, insofar as a direct comparison is meaningful. Using this map, we present two case studies. The first compares the magnetic signatures of two highland volcanoes, concluding that the comparatively greater thermal demagnetization at Syrtis Major compared with Tyrrhena Patera is likely due to a higher ratio of intruded to extruded magmas. The second uses the map along with topographic data to compare the magnetic signatures and crater retention ages of the demagnetized Hellas impact basin and magnetized Ladon impact basin. From this comparison, we determine that the martian global dynamo magnetic field went from substantial to very weak or nonexistent in the absolute model age time interval 4.15±0.05 to 4.07±0.05 Ga ago.  相似文献   
147.
Resurfacing of Titan by ammonia-water cryomagma   总被引:1,自引:0,他引:1  
The Cassini Titan Radar Mapper observed on Titan several large features interpreted as cryovolcanic during the October 26, 2004 pass at high northern latitudes [Lopes, R.M.C., and 43 colleagues, 2007. Icarus 186, 395-412]. To date, models of ammonia-water resurfacing have not been tied to specific events or evolutionary stages of Titan. We propose a model of cryovolcanism that involves cracking at the base of the ice shell and formation of ammonia-water pockets in the ice. As these ammonia-water pockets undergo partial freezing in the cold ice shell, the ammonia concentration in the pockets increases, decreasing the negative buoyancy of the ammonia-water mixture. If the ice shell is contaminated by silicates delivered in impacts, the liquid-solid density difference would be even less. While the liquid cannot easily become buoyant relative to the surrounding ice, these concentrated ammonia-water pockets are sufficiently close to the neutral buoyancy point that large-scale tectonic stress patterns (tides, non-synchronous rotation, satellite volume changes, solid state convection, or subsurface pressure gradients associated with topography) would enable the ammonia to erupt effusively onto the surface. Rather than suggesting steady-state volcanism over the history of the Solar System, we favor a scenario where the cryovolcanic features could have been associated with episodic (potentially late) geological activity.  相似文献   
148.
Arnus Vallis (AV) is a >300-km-long sinuous, rille located on the northeastern flank of the Syrtis Major volcano on Mars. Observational evidence presented here suggests that AV formed as an open lava channel that was at least partly incised into the pre-existing terrain. The lava source area consists of a sub-circular pit at the southwestern end of a 7-km-long straight section of channel. AV trends down slope from this source with an average bottom slope of 0.26% or 0.14°. Width varies from ∼1 km at the source to ∼0.6 km near the distal end, with a mean of 0.76 km. Depth decreases from ∼180 m at the source to ∼25 m near the distal end. The AV terminus is obscured by a large impact crater. We suggest that the material that flowed in AV must have been a relatively high temperature, low viscosity lava dynamically and perhaps compositionally similar to terrestrial komatiite or some lunar basalt lavas. If correct, this finding has implications for the mode of construction of Syrtis Major.  相似文献   
149.
Niels Hovius 《Icarus》2008,197(1):24-38
Formation of chasms in the polar ice caps of Mars has been attributed to meltwater outburst floods, but the cause of melting has remained uncertain. In a cap re-entrant enveloping Abalos Colles, west of Casma Boreale in the north polar cap, we have found possible evidence of recent volcano-ice interaction and outburst flooding. In this paper we demonstrate that these two mechanisms can have acted together to form or expand the Abalos re-entrant. Flat-topped ridges and circular rims protruding above the ice cap surface in the re-entrant apex may be lava ridges and volcano craters, and can have caused melting of 3.3 to 7.7×103 km3 of ice. The surrounding cap surface appears to have subsided and the likely volume of missing ice matches the melt estimate. Outburst flooding from this area may have reached peak discharges of 0.3 to according to scour patterns in one of the re-entrant channels. This required ponding of melt water during lava eruption and catastrophic release through a sub- or englacial melt water tunnel, the collapse of which has left a chasm in the ice cap margin. The flood features are geologically recent, and volcano-ice interaction may have occurred within the last 20,000 years.  相似文献   
150.
The sediments deposited on the northern margin of Greater India during the Paleocene allow the timing of collision with the Spontang Ophiolite, the oceanic Kohistan–Dras Arc and Eurasia to be constrained. U–Pb dating of detrital zircon grains from the Danian (61–65 Ma) Stumpata Formation shows a provenance that is typical of the Tethyan Himalaya, but with a significant population of grains from 129 ± 7 Ma also accounting for ∼15% of the total, similar to the synchronous Jidula Formation of south central Tibet. Derivation of these grains from north of the Indus Suture can be ruled out, precluding India’s collision with either Eurasia or the Kohistan–Dras before 61 Ma. Despite the immediate superposition of the Spontang Ophiolite, there are no grains in the Stumpata Formation consistent with erosion from this unit. Either Spontang obduction is younger than previously proposed, or the ophiolite remained submerged and/or uneroded until into the Eocene. The Mesozoic grains correlate well with the timing of ∼130 Ma volcanism in central Tibet, suggesting that this phase of activity is linked to extension across the whole margin of northern India linked to the separation of India from Australia and Antarctica at that time. Mesozoic zircons in younger sedimentary rocks in Tibet suggest a rapid change in provenance, with strong erosion from within or north of the suture zone starting in the Early Eocene following collision. We find no evidence for strongly diachronous collision from central Tibet to the western Himalaya.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号