首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1476篇
  免费   112篇
  国内免费   111篇
测绘学   134篇
大气科学   45篇
地球物理   306篇
地质学   263篇
海洋学   37篇
天文学   717篇
综合类   74篇
自然地理   123篇
  2024年   6篇
  2023年   6篇
  2022年   18篇
  2021年   20篇
  2020年   15篇
  2019年   25篇
  2018年   15篇
  2017年   32篇
  2016年   29篇
  2015年   31篇
  2014年   36篇
  2013年   67篇
  2012年   30篇
  2011年   61篇
  2010年   58篇
  2009年   85篇
  2008年   107篇
  2007年   127篇
  2006年   98篇
  2005年   83篇
  2004年   86篇
  2003年   79篇
  2002年   79篇
  2001年   58篇
  2000年   76篇
  1999年   54篇
  1998年   51篇
  1997年   49篇
  1996年   32篇
  1995年   36篇
  1994年   29篇
  1993年   26篇
  1992年   19篇
  1991年   13篇
  1990年   14篇
  1989年   8篇
  1988年   17篇
  1987年   12篇
  1986年   6篇
  1985年   3篇
  1982年   2篇
  1981年   1篇
排序方式: 共有1699条查询结果,搜索用时 15 毫秒
991.
David Parry Rubincam   《Icarus》2007,192(2):460-468
Photon thrust from shape alone can produce quasi-secular changes in an asteroid's orbital elements. An asteroid in an elliptical orbit with a north–south shape asymmetry can steadily alter its elements over timescales longer than one orbital trip about the Sun. This thrust, called here orbital YORP (YORP = Yarkovsky–O'Keefe–Radzievskii–Paddack), operates even in the absence of thermal inertia, which the Yarkovsky effects require. However, unlike the Yarkovsky effects, which produce secular orbital changes over millions or billions of years, the change in an asteroid's orbital elements from orbital YORP operates only over the precession timescale of the orbit or of the asteroid's spin axis; this is generally only thousands or tens of thousands of years. Thus while the orbital YORP timescale is too short for an asteroid to secularly journey very far, it is long enough to warrant investigation with respect to 99942 Apophis, which might conceivably impact the Earth in 2036. A near-maximal orbital YORP effect is found by assuming Apophis is without thermal inertia and is shaped like a hemisphere, with its spin axis lying in the orbital plane. With these assumptions orbital YORP can change its along-track position by up to ±245 km, which is comparable to Yarkovsky effects. Though Apophis' shape, thermal properties, and spin axis orientation are currently unknown, the practical upper and lower limits are liable to be much less than the ±245 km extremes. Even so, the uncertainty in position is still likely to be much larger than the 0.5 km “keyhole” Apophis must pass through during its close approach in 2029 in order to strike the Earth in 2036.  相似文献   
992.
A long-term adaptive optics (AO) campaign of observing the double Asteroid (90) Antiope has been carried out in 2003-2005 using 8-10-m class telescopes, allowing prediction of the circumstances of mutual events occurring during the July 2005 opposition [Marchis, F., Descamps, P., Hestroffer, D., Berthier, J., de Pater, I., 2004. Bull. Am. Astron. Soc. 36, 1180]. This is the first opportunity to use complementary lightcurve and AO observations to extensively study the (90) Antiope system, an interesting visualized binary doublet system located in the main belt. The orbital parameters derived from the AO observations have served as input quantities for the derivation of a whole set of other physical parameters (namely shapes, surface scattering, bulk density, and internal properties) from analysis of collected lightcurves. To completely model the observed lightcurves, we employed Roche figures to construct an overall shape solution. The combination of these complementary observations has enabled us to derive a reliable physical and orbital solution for the system. Our model is consistent with a system of slightly non-spherical components, having a size ratio of 0.95 (with Ravg=42.9±0.5 km, separation=171±1 km), and exhibiting equilibrium figures for homogeneous rotating bodies. A comparison with grazing occultation event lightcurves suggests that the real shapes of the components do not depart from Roche equilibrium figures by more than 10%. The J2000 ecliptic coordinates of the pole of the system are λn=200°±2° and αn=38°±2°. The orbital period was refined to P=16.5051±0.0001 h, and the density is found to be slightly lower than previous determinations, with a value of 1.25±0.05 g/cm3, leading to a significant macro-porosity of 30%. Possible scenarios for the origin of the system are also discussed.  相似文献   
993.
On October 10, 1995, an ML= 4.8 (ING) earthquake occurred in the region of Lunigiana (northwestern Italy). The shock was felt over a large area and produced significant damage. We performed a macroseismic survey and damage zonation and assessed a maximum intensity VII MCS in the epicentral area. The damage pattern, that we investigated in detail for some of the villages in the most heavily damaged area, emphasises the role of surface geology in amplifying the effects. Topographic effects and near-surface geology are largely responsible for broadening the damage area. Given the moderate size of the earthquake, many of the macroseismic observations, including rotations of objects and the propagation of visible waves in the ground, are suggestive of amplification phenomena.  相似文献   
994.
Linear α2Ω-dynamo waves are investigated in a thin turbulent, differentially rotating convective stellar shell. A simplified one-dimensional model is considered and an asymptotic solution constructed based on the small aspect ratio of the shell. In a previous paper Griffiths et al. (Griffiths, G.L., Bassom, A.P., Soward, A.M. and Kuzanyan, K.M., Nonlinear α2Ω-dynamo waves in stellar shells, Geophys. Astrophys. Fluid Dynam., 2001, 94, 85–133) considered the modulation of dynamo waves, linked to a latitudinal-dependent local α-effect and radial gradient of the zonal shear flow. These effects are measured at latitude θ by the magnetic Reynolds numbers R α f(θ) and R Ω g(θ). The modulated Parker wave, which propagates towards the equator, is localised at some mid-latitude θp under a Gaussian envelope. In this article, we include the influence of a latitudinal-dependent zonal flow possessing angular velocity Ω*(θ) and consider the possibility of non-axisymmetric dynamo waves with azimuthal wave number m. We find that the critical dynamo number D c?=?R α R Ω is minimised by axisymmetric modes in the αΩ-limit (Rα→0). On the other hand, when Rα?≠?0 there may exist a band of wave numbers 0?m?m ? for which the non-axisymmetric modes have a smaller D c than in the axisymmetric case. Here m ? is regarded as a continuous function of R α with the property m?→0 as R α→0 and the band is only non-empty when m??>1, which happens for sufficiently large R α. The preference for non-axisymmetric modes is possible because the wind-up of the non-axisymmetric structures can be compensated by phase mixing inherent to the α2Ω-dynamo. For parameter values resembling solar conditions, the Parker wave of maximum dynamo activity at latitude θp not only propagates equatorwards but also westwards relative to the local angular velocity Ω* p ). Since the critical dynamo number D c?=?R α R Ω is O (1) for small R α, the condition m ??>?1 for non-axisymmetric mode preference imposes an upper limit on the size of |dΩ*/dθ|.  相似文献   
995.
研究冻土动强度对寒区工程和人工冻结工程施工及安全性评价具有重要意义。为了揭示主应力轴旋转对冻结黏土动强度特性的影响,利用空心扭剪仪开展不同围压下冻结黏土动三轴和空心扭剪试验,探讨了主应力轴旋转对冻结黏土动强度、动黏聚力和动内摩擦角变化规律的影响。结果表明:主应力轴旋转导致冻结黏土试样的动强度降低,围压越低主应力轴旋转对动强度影响效果就越明显;随着震动次数的增多,主应力轴旋转条件下冻结黏土动黏聚力衰减速度相对于主应力方向固定时加快;不同于主应力轴方向固定条件下动内摩擦角随震动次数增多而衰减的特点,在主应力轴旋转条件下动内摩擦角随震动次数增多而增大。另外,研究显示主应力轴旋转条件下动强度、动黏聚力和动内摩擦角均与震动次数的对数呈良好的线性关系,用线性方程对其进行了拟合,并给出拟合系数和确定系数。  相似文献   
996.
本文通过交叉谱分析揭示了地球自转存在152个月,12个月和6个月的显著周期。赤道东太平洋SSTA存在38个月,214个月,51个月和3个月的显著周期,并且二者在38个月和152个月的周期上关系密切。落后时间长度谱显示,对于38个月和152个月的周期,海温的变化能影响地球自转的速率;而对于214个月的周期,地球自转的变化能影响海温场的变化,但此为次要因素。  相似文献   
997.
介绍用锂束注入法测量磁约束等离子体的重要参数——极向磁场的物理分析过程、实验设计和实验仪器的指标选择。  相似文献   
998.
Following final closure of the Neotethyan Ocean during the late Miocene, deformation in central Turkey has led to crustal thickening and uplift to produce the Anatolian Plateau followed by westward extrusion of terranes by strike–slip. Widespread volcanism has accompanied this latter (neotectonic) phase, and palaeomagnetic study of the volcanism shows a coherent record of differential block rotations, indicating that the Anatolian region is not a plate (or ‘platelet’) sensu stricto but is undergoing distributed internal deformation. To evaluate the scale of neotectonic rotations in the transition zone near the western limit of tectonic escape and the border of the extensional domain in central-west Turkey, we have studied the palaeomagnetism at 82 sites in volcanic suites distributed along a 140-km lineament with north–south trend and ranging in age from 18 to 8 Ma. Comparable deflection of magnetic remanence from the present field direction is identified along the full length of the lineament. A mean clockwise rotation of 12.3±4.2° is determined for this western sector of the Anatolian strike–slip province. Since similar rotations are observed in the youngest and oldest units, this cumulative rotation occurred after the late Miocene. When interpreted together with results elsewhere in Anatolia, it is inferred that the rotation is later than crustal thickening and uplift of the Anatolian Plateau and entirely a facet of the tectonic escape. Inclinations are mostly 10° shallower than the predicted Miocene field and are considered to reflect the presence of a persistent inclination anomaly in the Mediterranean region. Larger rotations departing from the regional trend are also observed within the study region, but are confined to the vicinity of major faults, notably those bounding the Afyon-Ak ehir Graben.The pattern of neotectonic declinations across Anatolia identifies strong anticlockwise rotation in the east near the Arabian pincer with progressive reduction in the amount of rotation towards the west; it becomes zero or slightly clockwise at the western extremity of the accreted terrane collage. Rotations also appear to become generally younger towards the south. Crustal deformation has therefore been distributed, and the net effect of terrane extrusion to the west and south has been to expand the curvature of the Tauride Arc. The westward radial expansion of the extruded terranes is inferred to combine with backroll on the Hellenic Arc to produce the contemporary extensional province in western Turkey.  相似文献   
999.
Independent of Indochina extrusion, the South China Sea experienced a process from passive continental rifting to marginal sea drifting. According to the fault patterns in the Beibu Gulf basin and the Pearl River Mouth basin, the continental rifting and early spreading stage from 32 to 26 Ma were controlled by extensional stress field, which shifted clockwise from southeastward to south southeastward. From 24 Ma on, the sea spread in NW-SE direction and ceased spreading at around 15.5 Ma. Integrated geological information with the assumption that the South China Sea developed along a pre-Cenozoic weakness zone, we did analogue experiments on the South China Sea evolu- tion. Experiments revealed that the pre-existing weakness zone goes roughly along the uplift zone between the present Zhu-1 and Zhu-2 depression. The pre-existing weakness zone is composed of three segments trending NNE, roughly EW and NEE, respectively. The early opening of the South China Sea is accompanied with roughly 15° clockwise rotation, while the SE sub-sea basin opened with SE extension. Tinjar fault was the western boundary of the Nansha block (Dangerous Ground), while Lupar fault was the eastern boundary of the Indochina, NW-trending rift belt known as Zengmu basin developed between above two faults due to block divergent of Indochina from Nansha. In the experiment, transtensional flower structures along NW-trending faults are seen, and slight inversion occurs along some NE-dipping faults. The existence of rigid massifs changed the orientations of some faults and rift belt, and also led to deformation concentrate around the massifs. The rifting and drifting of the South China Sea might be caused by slab pull from the proto South China Sea subducting toward Borneo and/or mantle flow caused by India-Asia collision.  相似文献   
1000.
1Introduction Seaiceoccupiesthemainpartofthesurfaceof theArcticOcean.ThefocusoftheSecondChineseNa- tionalArcticResearchExpedition(CHINAE-2003) wastounderstandthevariationsofarcticmarineenvi- ronmentsandtheseaiceeffectsontheclimatechanges ofglobalextent,inmiddleandlowerlatitudesareas, especiallyinChina.Therefore,thejointsea-ice-airob- servationforseaicestudieswasoneofthekeypro- jectsinCHINARE-2003.Theinvestigatedareacov- ered3000kmfromsouthtonorthand900kmfrom westtoeast.Seventemporali…  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号