首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   923篇
  免费   81篇
  国内免费   253篇
测绘学   9篇
大气科学   17篇
地球物理   86篇
地质学   877篇
海洋学   72篇
天文学   77篇
综合类   16篇
自然地理   103篇
  2024年   10篇
  2023年   24篇
  2022年   15篇
  2021年   41篇
  2020年   47篇
  2019年   45篇
  2018年   76篇
  2017年   89篇
  2016年   64篇
  2015年   59篇
  2014年   71篇
  2013年   89篇
  2012年   130篇
  2011年   30篇
  2010年   33篇
  2009年   34篇
  2008年   30篇
  2007年   21篇
  2006年   24篇
  2005年   26篇
  2004年   20篇
  2003年   33篇
  2002年   32篇
  2001年   27篇
  2000年   32篇
  1999年   27篇
  1998年   16篇
  1997年   19篇
  1996年   7篇
  1995年   7篇
  1994年   8篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1989年   6篇
  1988年   5篇
  1987年   5篇
  1986年   4篇
  1985年   8篇
  1984年   3篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
排序方式: 共有1257条查询结果,搜索用时 15 毫秒
111.
卡瓦布拉克杂岩带出露于中天山地块东段卡瓦布拉克—阿克塔格地区,沿卡瓦布拉克断裂呈东西向展布。笔者选择构成该杂岩带的中—基性岩石主体闪长岩,开展了LA-ICP-MS锆石U-Pb年代学和LA-MC-ICP-MS锆石Hf同位素研究。结果表明:闪长岩中锆石呈自形—半自形,发育典型的岩浆锆石振荡生长环带,Th/U值较高(均大于0.40),且Th、U含量呈现较好的正相关关系,为典型的岩浆成因锆石;这些锆石的206Pb/238 U年龄加权平均值为(375±1)Ma,MSWD=0.081,属晚泥盆世,可代表其结晶年龄;锆石具有较均一的Hf同位素组成,初始比值为0.282 655~0.282 747、εHf(t)值为4.0~7.2,其对应的亏损地幔模式年龄为714~842Ma。结合区域地质资料认为,卡瓦布拉克杂岩带中的闪长岩由亏损岩石圈地幔发生部分熔融而形成。  相似文献   
112.
Precise in situ zircon U-Pb dating and Lu–Hf isotopic measurement using an LA-ICP-MS system, whole-rock major and trace element geochemistry and Sr–Nd isotope geochemistry were conducted on the volcanic host rocks of the Tongyu copper deposit on the basis of further understanding of its geological characteristics. Three zircon samples from the volcanic host rocks yielded 206Pb/238 U weighted average ages ranging from 436±4 Ma to 440±5 Ma, which are statistically indistinguishable and coeval with the ca. 440 Ma northward subduction event of the Paleo-Qinling oceanic slab. The volcanic host rocks were products of magmatic differentiation that evolved from basalt to andesite to dacite to rhyolite, forming an integrated tholeiitic island arc volcanic rock suite. The primitive mantle-normalized trace element patterns for most samples show characteristics of island arc volcanic rocks, such as relative enrichment of LILE(e.g. Th, U, Pb and La) and depletion of HFSE(e.g. Nb, Ta, Ti, Zr and Hf). Discrimination diagrams of Ta/Yb vs Th/Yb, Ta vs Th, Yb vs Th/Ta, Ta/Hf vs Th/Hf, Hf/3 vs Th vs Nb/16, La vs La/Nb and Nb vs Nb/Th all suggest that both the volcanic host rocks from the Tongyu copper deposit and the volcanic rocks from the regional Xieyuguan Group were formed in an island arc environment related to subduction of an oceanic slab. Values of ISr(0.703457 to 0.708218) and εNd(t)(-2 to 5.8) indicate that the source materials of volcanic rocks from the Tongyu copper deposit and the Xieyuguan Group originated from the metasomatised mantle wedge with possible crustal material assimilation. Most of the volcanic rock samples show good agreement with the values of typical island arc volcanic rocks in the ISr-εNd(t) diagram. The involvement of crustal-derived material in the magma of the volcanic rocks from the Tongyu copper deposit was also reflected in the zircon εHf(t) values, which range from-3.08 to 10.7, and the existence of inherited ancient xenocrystic zircon cores(2616±39 Ma and 1297±22 Ma). The mineralization of the Tongyu copper deposit shows syn-volcanic characteristics such as layered orebodies interbedded with the volcanic rock strata, thus, the zircon U-Pb age of the volcanic host rocks can approximately represent the mineralization age of the Tongyu copper deposit. Both the Meigou pluton and the volcanic host rocks were formed during the ca. 440 Ma northward subduction of the Paleo-Qinling Ocean when high oxygen fugacity aqueous hydrothermal fluid released by dehydration of the slab and the overlying sediments fluxed into the mantle wedge, triggered partial melting of the mantle wedge, and activated and extracted Cu and other ore-forming elements. The magma and ore-bearing fluid upwelled and erupted, and consequently formed the island arc volcanic rock suite and the Tongyu VHMS-type copper deposit.  相似文献   
113.
A new natural rutile reference material is presented, suitable for U‐Pb dating and Zr‐in‐rutile thermometry by microbeam methods. U‐Pb dating of rutile R632 using laser ablation ICP‐MS with both magnetic sector field and quadrupole instruments as well as isotope dilution‐thermal ionisation mass spectrometry yielded a concordia age of 496 ± 2 Ma. The high U content (> 300 μg g?1) enabled measurement of high‐precision U‐Pb ages despite its young age. The sample was found to have a Zr content of 4294 ± 196 μg g?1, which makes it an excellent complementary reference material for Zr‐in‐rutile thermometry. Individual rutile grains have homogeneous compositions of a number of other trace elements including V, Cr, Fe, Nb, Mo, Sn, Sb, Hf, Ta and W. This newly characterised material significantly expands the range of available rutile reference materials relevant for age and temperature determinations.  相似文献   
114.
《International Geology Review》2012,54(15):1776-1800
The northern and southern zones of the eastern Pontides (northeast Turkey) contain numerous plutons of varying ages and compositions. Geochemical and isotopic results on two Hercynian granitoid bodies located in the northern zone of the eastern Pontides allow a proper reconstruction of their origin for the first time. The intrusive rocks comprise four distinct bodies, two of which we investigated in detail. Based on LA–ICP–MS U–Pb zircon dating, the Derinoba and Kayadibi granites have similar 206Pb/238U versus 207Pb/235U Concordia ages of 311.1 ± 2.0 and 317.2 ± 3.5 million years for the former and 303.8 ± 1.5 million years for the latter. Aluminium saturation index values of both granites are between 0.95 and 1.35, indicating dominant peraluminous melt compositions. Both intrusions have high SiO2 (74–77 wt.%) contents and show high-K calc-alkaline and I- to S-type characteristics. Primitive mantle-normalized element diagrams display enrichment in K, Rb, Th, and U, and depletion in Ba, Nb, Ta, Sr, P, and Ti. Chondrite-normalized rare earth element patterns are characterized by concave-upward shapes and pronounced negative Eu anomalies with Lacn/Ybcn?=?4.6–9.7 and Eucn/Eu*?=?0.11–0.59 (Derinoba), and Lacn/Ybcn?=?2.7–5.5 and Eucn/Eu*?=?0.31–0.37 (Kayadibi). These features imply crystal-melt fractionation of plagioclase and K-feldspar without significant involvement of garnet. The Derinoba samples have initial ?Nd values between –6.1 and –7.1 with Nd model ages and T DM between 1.56 and 2.15 thousand million years. The Kayadibi samples show higher initial ?Nd(I) values, –4.5 to –6.2, with Nd model ages between 1.50 and 1.72 thousand million years. This study demonstrates that the Sr isotope ratios generally display negative correlation with Nd isotopes; Sr isotope ratios were lowered in some samples by hydrothermal interaction or alteration. Isotopic and petrological data suggest that both granites were produced by the partial melting of early Palaeozoic lower crustal rocks, with minor contribution from the mantle. Collectively, these rocks represent a late stage of Hercynian magmatism in the eastern Pontides.  相似文献   
115.
《International Geology Review》2012,54(15):1835-1864
The Yinshan deposit is a large epithermal-porphyry polymetallic deposit, and the timing and petrogenesis of ore-hosting porphyries have been hotly debated. We present new results from geochemical, whole-rock Sr–Nd and zircon U–Pb–Hf–O isotopic investigations. Zircon U–Pb data demonstrate that the quartz porphyry, dacitic porphyry, and quartz dioritic porphyry formed at ?172.2 ± 0.4 Ma, ?171.7 ± 0.5 Ma, and ?170.9 ± 0.3 Ma, respectively. Inherited zircon cores show significant age spreads from ?730 to ?1390 Ma. Geochemically, they are high-K calc-alkaline or shoshonitic rocks with arc-like trace element patterns. They have similar whole-rock Nd and zircon Hf isotopic compositions, yet an increasing trend in ?Nd(t) and ?Hf(t) values typifies the suite. Older (inherited) zircons of the three porphyries display Hf compositions comparable to those of the Jiangnan Orogen basement rocks. In situ zircon oxygen isotopic analyses reveal that they have similar oxygen isotopic compositions, which are close to those of mantle zircons. Moreover, a decreasing trend of δ18O values is present. We propose that the ore-related porphyries of the Yinshan deposit were emplaced contemporaneously and derived from partial melting of Neoproterozoic arc-derived mafic (or ultra-mafic) rocks. Modelling suggests that the quartz porphyries, dacitic porphyries, and quartz dioritic porphyries experienced ?25%, ?10%, and ?10% crustal contaminations by Shuangqiaoshan rocks. Our study provides important constraints on mantle–crust interaction in the genesis of polymetallic mineralization associated with Mesozoic magmatism in southeastern China.  相似文献   
116.
We review data for the Tuva–Mongolia Massif and show that this massif was not derived from the Siberian Craton.  相似文献   
117.
《International Geology Review》2012,54(15):1856-1883
ABSTRACT

Here we report new LA-ICPMS U–Pb zircon geochronology of ultrahigh temperature (UHT) metasedimentary rocks and associated crystallized melt patches, from the central Highland Complex (HC), Sri Lanka. The detrital zircon 206Pb/238U age spectra range between 2834 ± 12 and 722 ± 14 Ma, evidencing new and younger depositional ages of sedimentary protoliths than those known so far in the HC. The overgrowth domains of zircons in these UHT granulites yield weighted mean 206Pb/238U age clusters from 665.5 ± 5.9 to 534 ± 10 Ma, identified as new metamorphic ages of the metasediments in the HC. The zircon ages of crystallized in situ melt patches associated with UHT granulites yield tight clusters of weighted mean 206Pb/238U ages from 558 ± 1.6 to 534 ± 2.4 Ma. Thus, using our results coupled with recently published geochronological data, we suggest a new geochronological framework for the evolutionary history of the metasedimentary package of the HC. The Neoarchean to Neoproterozoic ages of detrital zircons indicate that the metasedimentary package of the HC has derived from ancient multiple age provenances and deposited during the Neoproterozoic Era. Hence, previously reported upper intercept ages of ca. 2000–1800 Ma from metaigneous rocks should be considered as geochronological evidence for existence of a Palaeoproterozoic igneous basement which possibly served as a platform for the deposition of younger supracrustal rocks, rather than timing of magmatic intrusions into the already deposited ancient sediments, as has been conventionally interpreted. The intense reworking of entire Palaeoproterozoic basement rocks in the Gondwana Supercontinent assembly may have caused sediments of multiple ages and provenances to incorporate within supra-crustal sequences of the HC. Further, our data supports a convincing geochronological correlation between the HC of Sri Lanka and the Trivandrum Block of Southern India, disclosing the Gondwanian linkage between the HC of Sri Lanka and Southern Granulite Terrain of India.  相似文献   
118.
ABSTRACT

There are voluminous ultrahigh pressure-related orthogneisses and minor metamorphic supracrustal rocks in the northeastern Sulu UHP terrane (NSL), East China. The tectonic affinities of the supracrustal rocks are crucial for unravelling the deep continental subduction processes and locating the tectonic suture between the South China (SCB) and North China (NCB) blocks. In this contribution, we report new zircon U–Pb ages and Hf isotope data for the supracrustal rocks and metagabbros in the Zeku region of the NSL. In the Zeku region, the supracrustal rocks are spatially associated with granitic gneisses, metagabbros, and eclogites. Detrital zircon U–Pb analyses yield ages between 3.39 and 0.65 Ga that cluster as three major age populations including (1) 2.15–1.68 Ga with two subpeaks at ~1.83 Ga and~1.97 Ga, (2) 2.45–2.15 Ga with a peak at ~2.37 Ga, and (3) 0.79–0.65 Ga. In addition, there is a small age population between 3.39 and 2.61 Ga. The youngest age population of 0.79–0.65 Ga indicates that the Zeku supracrustal rocks must have been deposited after 650 Ma rather than during the Palaeoproterozoic as previously thought. The 210–190 Ma metamorphic ages suggest that the Zeku rocks were affected by Triassic collision–subduction and exhumation. Most of the Archaean-Palaeoproterozoic zircons have negative εHf(t) values and two-stage Hf model ages concentrating at 2.4–3.4 Ga (peak at ~2.9 Ga), indicating that source rocks of these zircons were mainly derived from recycling of ancient crustal material. These ages, together with the Hf isotopic compositions and rock assemblages, indicate that the Zeku supracrustal rocks were mainly derived from the Precambrian basement rocks of the northern Yangzte Block and have a tectonic affinity to the SCB, rather than the NCB. Our results, together with previously published data, suggest that there are two types of supracrustal rocks with different zircon U–Pb ages and tectonic affinities in the NSL. On the basis of new data, we suggest that the surface boundary between the SCB and NCB in the Jiaodong Peninsula is a complicated tectonic mélange zone rather than a single fault.  相似文献   
119.
Xiba granitic pluton is located in South Qinling tectonic domain of the Qinling orogenic belt and consists mainly of granodiorite and monzogranite with significant number of microgranular quartz dioritic enclaves. SHRIMP zircon U–Pb isotopic dating reveals that the quartz dioritic enclaves formed at 214±3 Ma, which is similar to the age of their host monzogranite (218±1 Ma). The granitoids belong to high-K calc-alkaline series, and are characterized by enriched LILEs relative to HFSEs with negative Nb, Ta and Ti anomalies, and right-declined REE patterns with (La/Yb)N ratios ranging from 15.83 to 26.47 and δEu values from 0.78 to 1.22 (mean= 0.97). Most of these samples from Xiba granitic pluton exhibit εNd(t) values of ?8.79 to ?5.38, depleted mantle Nd model ages (TDM) between 1.1 Ga and 1.7 Ga, and initial Sr isotopic ratios (87Sr/86Sr)i from 0.7061 to 0.7082, indicating a possible Meso- to Paleoproterozoic lower crust source region, with exception of samples XB01-2-1 and XB10-1 displaying higher (87Sr/86Sr)i values of 0.779 and 0.735, respectively, which suggests a contamination of the upper crustal materials. Quartz dioritic enclaves are interpreted as the result of rapid crystallization fractionation during the parent magmatic emplacement, as evidenced by similar age, texture, geochemical, and Sr-Nd isotopic features with their host rocks. Characteristics of the petrological and geochemical data reveal that the parent magma of Xiba granitoids was produced by a magma mingling process. The upwelling asthenosphere caused a high heat flow and the mafic magma was underplated into the bottom of the lower continent crust, which caused the partial melting of the lower continent crustal materials. This geodynamic process generated the mixing parent magma between mafic magma from depleted mantle and felsic magma derived from the lower continent crust. Integrated petrogenesis and tectonic discrimination with regional tectonic evolution of the Qinling orogen, it is suggested that the granitoids are most likely products in a post-collision tectonic setting.  相似文献   
120.
为确定东昆仑祁漫塔格乌兰乌珠尔地区片麻状黑云母花岗岩和二长花岗岩的形成时代、岩石成因、源区性质和构造背景,对该岩石样品进行了锆石U-Pb年代学、地球化学和锆石Hf同位素研究.结果显示:片麻状黑云母花岗岩加权平均年龄为457.5±2.3 Ma,铝饱和指数A/CNK介于0.98~1.02,属准铝质岩石,Na2O/K2O比值...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号